首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
R J Marchmont  M D Houslay 《Nature》1980,286(5776):904-906
Regulation of blood glucose levels by the liver is primarily achieved by the action of two peptide hormones, insulin and glucagon, which bind to specific receptors associated with the hepatocyte plasma membrane. Whilst the molecular action of glucagon at the level of the cell plasma membrane in activating adenylate cyclase is relatively well understood, we know little, if anything, of the molecular consequences of insulin occupying its receptor. We demonstrate here that insulin, at physiologically relevant concentrations, can trigger the cyclic AMP-dependent activation and phosphorylation of a low Km cyclic AMP phosphodiesterase attached to the liver plasma membrane. Such an effect may in part explain the ability of insulin to inhibit the increase in cellular cyclic AMP content that glucagon alone produces by activation of adenylate cyclase. Our observation that basal, intracellular cyclic AMP levels are insufficient to allow insulin to activate the cyclic AMP phosphodiesterase, yet those cyclic AMP levels achieved after exposure of the cells to glucagon are sufficient, gives a molecular rationale to Butcher and Sutherland's proposal that it is necessary to first elevate cellular cyclic AMP levels before they can be depressed by insulin.  相似文献   

2.
L Vallar  A Spada  G Giannattasio 《Nature》1987,330(6148):566-568
Gs and Gi are guanine nucleotide-binding, heterotrimer proteins that regulate the activity of adenylate cyclase, and are responsible for transferring stimulatory and inhibitory hormonal signals, respectively, from cell surface receptors to the enzyme catalytic unit. These proteins can be directly activated by agents such as GTP and analogues, fluoride and magnesium. Decreased amounts of Gs and Gi, and even the absence of Gs, have been described, whereas an altered Gs has been reported in a cultured cell line (UNC variant of S49 lymphoma cells), but has never been observed in human disease states. We have found a profoundly altered Gs protein in a group of human growth hormone-secreting pituitary adenomas, characterized by high secretory activity and intracellular cyclic AMP levels. In the membranes from these tumours no stimulation of adenylate cyclase activity by growth hormone-releasing hormone, by GTP or by fluoride was observed. Indeed, the last two agents caused an inhibition, probably mediated by Gi. In contrast, adenylate cyclase stimulation by Mg2+ was enormously increased. This altered pattern of adenylate cyclase regulation was reproduced when a cholate extract of the tumour membranes (which contains G proteins) was reconstituted with Gs-free, cyc- S49 cell membranes. Inasmuch as secretion from somatotrophic cells is known to be a cAMP-dependent function, the alteration of Gs could be the direct cause of the high secretory activity of the tumours in which it occurs.  相似文献   

3.
Activation of two signal-transduction systems in hepatocytes by glucagon   总被引:26,自引:0,他引:26  
The ability of glucagon to stimulate glycogen breakdown in liver played a key part in the classic identification of cyclic AMP and hormonally stimulated adenylate cyclase. But several observations indicate that glucagon can exert effects independent of elevating intracellular cAMP concentrations. These effects are probably mediated by an elevation of the intracellular concentration of free Ca2+ although the mechanism by which this occurs is unknown. We show here that glucagon, at the low concentrations found physiologically, causes both a breakdown of inositol phospholipids and the production of inositol phosphates. Indeed, we show that the glucagon analogue, (1-N-alpha-trinitrophenylhistidine,12-homoarginine)glucagon (TH-glucagon), which does not activate adenylate cyclase or cause any increase in cAMP in hepatocytes yet can fully stimulate glycogenolysis, gluconeogenesis and urea synthesis, stimulates the production of inositol phosphates. This stimulation of inositol phospholipid metabolism by low concentrations of glucagon provides a mechanism whereby glucagon can exert cAMP-independent actions on target cells. We suggest that hepatocytes possess two distinct receptors for glucagon, a GR-1 receptor coupled to stimulate inositol phospholipid breakdown and a GR-2 receptor coupled to stimulate adenylate cyclase activity.  相似文献   

4.
The adenylate cyclase system, which consists of a catalytic moiety and regulatory guanine nucleotide-binding proteins, provides the effector mechanism for the intracellular actions of many hormones and drugs. The tissue specificity of the system is determined by the particular receptors that a cell expresses. Of the many receptors known to modulate adenylate cyclase activity, the best characterized and one of the most pharmacologically important is the beta-adrenergic receptor (beta AR). The pharmacologically distinguishable subtypes of the beta-adrenergic receptor, beta 1 and beta 2 receptors, stimulate adenylate cyclase on binding specific catecholamines. Recently, the avian erythrocyte beta 1, the amphibian erythrocyte beta 2 and the mammalian lung beta 2 receptors have been purified to homogeneity and demonstrated to retain binding activity in detergent-solubilized form. Moreover, the beta-adrenergic receptor has been reconstituted with the other components of the adenylate cyclase system in vitro, thus making this hormone receptor particularly attractive for studies of the mechanism of receptor action. This situation is in contrast to that for the receptors for growth factors and insulin, where the primary biochemical effectors of receptor action are unknown. Here, we report the cloning of the gene and cDNA for the mammalian beta 2AR. Analysis of the amino-acid sequence predicted for the beta AR indicates significant amino-acid homology with bovine rhodopsin and suggests that, like rhodopsin, beta AR possesses multiple membrane-spanning regions.  相似文献   

5.
Many receptors, in response to ligand activation, trigger inositol phospholipid breakdown, which leads to rapid intracellular responses. The sustained activation of this pathway is believed to be at least one of the factors involved in the stimulation of cell growth and there has been much speculation that certain oncogenes use this pathway to effect uncontrolled cellular proliferation. It has been suggested, by analogy with the receptor-mediated control of adenylate cyclase, that the receptor stimulation of inositol phospholipid metabolism is mediated through a guanine nucleotide regulatory protein (G-protein) called Gp (or Np). Although such a species has not been identified, there is now strong experimental evidence that this process is mediated by a G-protein distinct from the stimulatory and inhibitory G-proteins (Gs and Gi, respectively). The ras genes code for a plasma membrane protein, p21, whose only known biochemical property is a high-affinity GTPase activity. We show here that the expression of normal p21N-ras in NIH 3T3 fibroblasts leads to the coupling of certain growth factor receptors to stimulated inositol phosphate production. We propose that the N-ras proto-oncogene encodes a protein which couples the receptors for certain growth factors to the stimulation of phospholipase C. Thus, N-ras p21 may be the putative Gp or a functionally related protein.  相似文献   

6.
K H Jakobs  K Aktories  G Schultz 《Nature》1983,303(5913):177-178
The cyc- variants of S49 lymphoma cells have served as powerful tools for studying the components and mechanisms of hormone-induced adenylate cyclase stimulation, as these cells are deficient in the guanine nucleotide regulatory site (Ns) mediating hormone, guanine nucleotide, cholera toxin and fluoride-induced stimulations of the enzyme. Because of this deficiency, membranes of these cells have been used for reconstitution of the system by inserting the coupling component derived from other cell types. The hormone-sensitive adenylate cyclase is not only stimulated by hormones but can also be inhibited by a wide variety of hormones and neurotransmitters, and there is some evidence that hormonal inhibition may be mediated by a distinct guanine nucleotide regulatory site. Studies in cyc- cells lacking a functional Ns may therefore answer this unresolved, important question. We have recently observed that stable GTP analogues can inhibit cyc- adenylate cyclase stimulated by purified, preactivated Ns or forskolin, which can activate adenylate cyclase even in the absence of a functional Ns (ref. 10). The data indicated that these Ns-deficient cells contain an inhibitory guanine nucleotide site, Ni. To strengthen this concept, we investigated whether the cyc- adenylate cyclase can be inhibited by a hormone. We report here that somatostatin decreases cyclic AMP levels in cyc- cells, inhibits the forskolin-stimulated adenylate cyclase and causes a concomitant increase in a high affinity GTPase activity in cyc- membranes. The data strongly suggest that both the hormone- and guanine nucleotide-induced adenylate cyclase inhibitions in cyc- cells are mediated by Ni and that the mechanisms of activation and inactivation of Ni are similar to those established for Ns.  相似文献   

7.
A cyclic AMP- and phorbol ester-inducible DNA element   总被引:11,自引:0,他引:11  
M Comb  N C Birnberg  A Seasholtz  E Herbert  H M Goodman 《Nature》1986,323(6086):353-356
  相似文献   

8.
C Jacquemin  H Thibout  B Lambert  C Correze 《Nature》1986,323(6084):182-184
Although cholera toxin induces a marked stimulation of adenylate cyclase activity in rat adipocyte plasma membranes, the holotoxin induces only a slight increase of cyclic AMP accumulation in intact cells. A similar apparent anomaly is seen with pertussis toxin, which has been shown to inhibit the Gi subunit of adenylate cyclase, and has a greater effect on cAMP accumulation and lipolysis than the activation by cholera toxin of the Gs subunit. To understand better the way in which these bacterial toxins are modifying the adipocyte cells, we prepared adipocyte plasma membranes and submitted them to ADP-ribosylation by cholera and pertussis toxins. During the incubation of control cells, we found endogenous ADP-ribosylation of Gs as a result of sustained stimulation of Gi by adenosine. Our results point to a possible homoeostatic system in which the autonomous adjustment of the basal activity of Gs as a function of that of Gi, under the control of feedback inhibitory ligands, ensures a steady production of cAMP within the cell.  相似文献   

9.
The GTP-binding protein, Go, regulates neuronal calcium channels   总被引:9,自引:0,他引:9  
J Hescheler  W Rosenthal  W Trautwein  G Schultz 《Nature》1987,325(6103):445-447
In neuronal cells, opioid peptides and opiates inhibit neurotransmitter release, which is a calcium-dependent process. They also inhibit adenylyl cyclase, presumably via the membrane signal-transducing component, Gi, a guanine nucleotide-binding protein (G-protein). No causal relationship between these two events has yet been demonstrated. Besides Gi, membranes of neuronal tissues contain large amounts of Go, a G-protein with unknown function. Both G-proteins are heterotrimers consisting of alpha-, beta- and gamma-subunits; the alpha-subunits can be ADP-ribosylated by an exotoxin from Bordetella pertussis (PT), which modification inhibits receptor-mediated activation of the G-protein. It was recently shown that noradrenaline, dopamine and gamma-aminobutyric acid (GABA) inhibit the voltage-dependent calcium channels in dorsal root and sympathetic ganglia; this inhibition is mimicked by intracellular application of guanine nucleotides and blocked by PT, suggesting the involvement of a G-protein. Here we report an inhibitory effect of the opioid D-Ala2, D-Leu5-enkephalin (DADLE) on the calcium current (ICa) in neuroblastoma X glioma hybrid cells (N X G cells). Pretreatment with PT almost completely abolishes the DADLE effect. The effect is restored by intracellular application of Gi and Go. As the alpha-subunit of Go (with or without beta-gamma complex) is 10 times more potent than Gi, we propose that Go is involved in the functional coupling of opiate receptors to neuronal voltage-dependent calcium channels.  相似文献   

10.
Glucagon exerts positive inotropic and chronotropic effects in the heart. Like its glycogenolytic effect in liver cells, the cardiac effects of glucagon are often correlated with adenylyl cyclase stimulation. Therefore, cyclic AMP-dependent phosphorylation of L-type Ca2+ channels might be involved in the inotropic effect of glucagon. There have been no reports, however, of the effects of glucagon on the cardiac Ca2+ current (ICa). Also, the physiological effects of glucagon could involve mechanisms other than stimulation of adenylyl cyclase. Here we show that glucagon enhances ICa in frog and rat ventricular myocytes. The effect of glucagon in rats resulted from a stimulation of adenylyl cyclase. In frogs, however, the effect of glucagon on ICa was smaller and occurred at a concentration tenfold lower than in rats, and adenylyl cyclase was not modified. In addition, cAMP potentiated the effect of glucagon on ICa in frog ventricle, which correlated with the observed inhibition by glucagon of low-Km cAMP phosphodiesterase activity. Therefore, this is an example of a hormone that affects cardiac function in a similar way to a variety of synthetic cardiotonic compounds, such as milrinone and Ro-20-1724. Inhibition of phosphodiesterase activity by glucagon may be essential in animals in which glucagon increases cardiac contractility but does not effectively stimulate adenylyl cyclase.  相似文献   

11.
A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor   总被引:46,自引:0,他引:46  
Atrial natriuretic peptide (ANP) is a polypeptide hormone whose effects include the induction of diuresis, natriuresis and vasorelaxation. One of the earliest events following binding of ANP to receptors on target cells is an increase in cyclic GMP concentration, indicating that this nucleotide might act as a mediator of the physiological effects of the hormone. Guanylate cyclase exists in at least two different molecular forms: a soluble haem-containing enzyme consisting of two subunits and a non-haem-containing transmembrane protein having a single subunit. It is the membrane form of guanylate cyclase that is activated following binding of ANP to target cells. We report here the isolation, sequence and expression of a complementary DNA clone encoding the membrane form of guanylate cyclase from rat brain. Transfection of this cDNA into cultured mammalian cells results in expression of guanylate cyclase activity and ANP-binding activity. The ANP receptor/guanylate cyclase represents a new class of mammalian cell-surface receptors which contain an extracellular ligand-binding domain and an intracellular guanylate cyclase catalytic domain.  相似文献   

12.
T Michel  B B Hoffman  R J Lefkowitz 《Nature》1980,288(5792):709-711
Many hormones interact with receptors which stimulate the enzyme adenylate cyclase. Less well characterized ar those receptors which mediate an inhibition of adenylate cyclase activity. However, guanine nucleotides are clearly important in the regulation of both stimulatory and inhibitory receptors. Monovalent cations, notably Na+, regulate many inhibitory receptor systems but apparently not stimulatory receptors. We investigate here the effects of Na+ and guanine nucleotides on the adenylate cyclase-coupled inhibitory alpha 2-adrenergic receptor of the rabbit platelet. Computer modelling of adrenaline competition curves with 3H-dihydroergocryptine (3H-DHE) indicates that adrenaline induces two distinct affinity states of the alpha 2 receptor--one of higher (alpha 2H) and the other of lower (alpha 2L) affinity. Guanyl-5'-yl-imidodiphosphate (Gpp(NH)p) seems to reduce adrenaline affinity to converting the high-affinity state into the low-affinity form of the receptor. In contrast, Na+ reduces adrenaline affinity at both the high- and low-affinity states of the alpha 2 receptor while preserving receptor heterogeneity. Thus, guanine nucleotides and Na+ differ in the manner by which each reduces agonist affinity for the alpha 2-adrenergic receptor.  相似文献   

13.
K Seuwen  I Magnaldo  J Pouysségur 《Nature》1988,335(6187):254-256
Growth factors can be divided into two classes which act through distinct signal transduction pathways. One class including epidermal growth factor, platelet derived growth factor and fibroblast growth factor activates receptor tyrosine kinases, and the second class, including thrombin, bombesin, bradykinin and vasopressin activates a phosphoinositide-specific phospholipase C through GTP-binding proteins which can be inactivated by pertussis toxin. In Chinese hamster lung fibroblasts, thrombin-induced mitogenicity seems to correlate well with phospholipase C activation and both events are sensitive to pertussis toxin. Thrombin, like the other mitogens in this class, simultaneously inhibits adenylate cyclase. This involves an inhibitory G protein (Gi), a well established pertussis toxin substrate. The relative contributions of the two signalling pathways to mitogenicity has not been evaluated so far. We report here that the neurotransmitter serotonin (5-hydroxytryptamine), a contracting agent and mitogen for smooth muscle cells, activates phospholipase C, inhibits adenylate cyclase and stimulates DNA synthesis in fibroblasts. These events are sensitive to pertussis toxin. We show that the mitogenicity of 5-hydroxytryptamine can be uncoupled from phospholipase C activation that is mediated by 5-HT2 receptors, but correlates perfectly with inhibition of adenylate cyclase through 5-HT1B receptor. We propose that inhibition of adenylate cyclase or activation of an undefined effector system by Gi is important in 5-hydroxytryptamine induced DNA synthesis and contributes to the strong mitogenicity of the other members of this family of growth factors.  相似文献   

14.
K Haga  T Haga  A Ichiyama  T Katada  H Kurose  M Ui 《Nature》1985,316(6030):731-733
Muscarinic receptors trigger several different responses including an increase in concentration of cyclic GMP, a decrease in cyclic AMP concentration, breakdown of polyphosphoinositides and changes in ion permeability. It is not yet clear whether these reactions occur sequentially or independently and which directly coupled to the muscarinic receptor. Several lines of evidence indicate that muscarinic receptors in many, if not all, cell types are coupled to the inhibitory guanine nucleotide regulatory protein (Ni or Gi) of adenylate cyclase. To provide direct evidence for this coupling, we have reconstituted muscarinic receptors purified from porcine brain with Ni purified from rat brain in a phospholipid vesicle. Here, we report that the GTPase activity of Ni is stimulated by carbachol. This action is blocked by the simultaneous addition of atropine and is not observed when the Ni protein is ADP-ribosylated. We conclude that one function of the muscarinic receptor is the activation of Ni.  相似文献   

15.
H Y Wang  D C Watkins  C C Malbon 《Nature》1992,358(6384):334-337
Fully-differentiated mouse 3T3-L1 fibroblasts accumulate large amounts of lipid at 7-10 days after induction by insulin or by dexamethasone and a methyl xanthine. G proteins mediate transmembrane signalling from a diverse group of cell-surface receptors to effector units that include phospholipase C, adenylyl cyclase and ion channels. They are also targets of regulation themselves. 3T3-L1 fibroblasts display marked changes in levels of G protein when induced to differentiate to adipocytes. Here we show that cholera toxin, which ADP-ribosylates and activates the G protein subunit Gs alpha, blocks the induction of differentiation, whereas increasing intracellular cyclic AMP directly with the dibutyryl analogue or indirectly with pertussis toxin or forskolin does not affect differentiation. Oligodeoxynucleotides antisense to the sequence encoding Gs alpha accelerate differentiation markedly. The time course of adipogenesis declined from 7-10 days in controls to roughly 3 days in cultures treated with antisense-Gs alpha oligodeoxynucleotides, whereas oligodeoxynucleotides, antisense to Gi alpha 1, Gi alpha 3, and sense and missense to Gs alpha, had no such effect. Antisense-Gs alpha alone induced differentiation by day 7, indicating that Gs alpha activity modulates differentiation in 3T3-L1 cells, acting in a new role which is independent of increased intracellular cAMP.  相似文献   

16.
The guanine nucleotide-binding stimulatory protein (Gs) couples hormone-receptor interaction to the activation of adenylate cyclase and the generation of cyclic AMP. Studies using frog neuroepithelium indicate that the sense of smell is mediated by a Gs-adenylate cyclase system, and this prompted us to test olfaction in the only known model of Gs deficiency in the animal kingdom, Gs-deficient (type 1a) pseudohypoparathyroidism (PHP), which occurs in humans. Such patients are resistant to the cAMP-mediated actions of several hormones. (Although Henkin has reported disturbances in the sense of smell in six patients with PHP, currently available biochemical measurements such as the cAMP response to parathyroid hormone (PTH) and determination of Gs activity were not reported and olfactory testing was limited.) In the present study, we found that all Gs-deficient patients had impaired olfaction when compared with PHP patients who had normal Gs activity (type 1b PHP, in which patients are resistant only to the action of PTH in the kidney). This is the first evidence of human olfactory impairment which can be related to Gs deficiency and suggests that Gs-deficient PHP patients may be resistant to cAMP-mediated actions in other non-endocrine systems.  相似文献   

17.
Pertussis toxin reverses adenosine inhibition of neuronal glutamate release   总被引:14,自引:0,他引:14  
A C Dolphin  S A Prestwich 《Nature》1985,316(6024):148-150
Adenosine and its analogues are potent inhibitors of synaptic activity in the central and peripheral nervous system. In the central nervous system (CNS), this appears to arise primarily by inhibition of presynaptic release of transmitters, including glutamate, which is possibly the major excitatory transmitter in the brain. In addition, postsynaptic effects of adenosine have been reported which would also serve to reduce neurotransmission. The mechanism by which adenosine inhibits CNS neurotransmission is unknown, although it appears to exert its effect via an A1 receptor which in some systems is negatively coupled to adenylate cyclase. In an attempt to elucidate the mechanism of inhibition, we have examined the effect of pertussis toxin (PTX) on the ability of the stable adenosine analogue (-)phenylisopropyladenosine (PIA) to inhibit glutamate release from cerebellar neurones maintained in primary culture. PTX, by ADP-ribosylating the nucleotide-binding protein Ni, prevents coupling of inhibitory receptors such as the A1 receptor to adenylate cyclase. As reported here, we found that PTX, as well as preventing inhibition of adenylate cyclase by PIA, also converts the PIA-induced inhibition of glutamate release to a stimulation. Our results suggest strongly that purinergic inhibitory modulation of transmitter release occurs by inhibition of adenylate cyclase.  相似文献   

18.
The neurohypophyseal hormone arginine vasopressin has diverse actions, including the inhibition of diuresis, contraction of smooth muscle, stimulation of liver glycogenolysis and modulation of adrenocorticotropic hormone release from the pituitary. Arginine vasopressin receptors are G protein-coupled and have been divided into at least three types; the V1a (vascular/hepatic) and V1b (anterior pituitary) receptors which act through phosphatidylinositol hydrolysis to mobilize intracellular Ca2+, and the V2 (kidney) receptor which is coupled to adenylate cyclase. We report here the cloning of a complementary DNA encoding the hepatic V1a arginine vasopressin receptor. The liver cDNA encodes a protein with seven putative transmembrane domains, which binds arginine vasopressin and related compounds with affinities similar to the native rat V1a receptor. The messenger RNA corresponding to the cDNA is distributed in rat tissues known to contain V1a receptors.  相似文献   

19.
The protein products of several transforming retroviruses as well as the receptors for several hormones and growth factors, including insulin, have been shown to possess a protein kinase activity in vitro specific for tyrosine residues in protein substrates, including themselves. In the case of pp60src and the insulin receptor, autophosphorylation activates the tyrosine kinase activity towards exogenous substrates. Experiments indicate that, in vivo, many of these viruses or growth factors induce an increase in cellular phosphotyrosine, as well as an increase in the phosphorylation of serine residues on proteins, including ribosomal protein S6. It seems likely that some of the effects of insulin might be mediated by phosphorylation of intracellular substrates by its receptor. As the beta subunit of the receptor is a transmembrane protein, such phosphorylation could occur either while the receptor is still in the membrane or after its internalization. In various cell systems, internalized receptors are degraded, reshuttled back to the plasmalemma or maintained in a separate compartment before reinsertion in the membrane; shuttling of the insulin receptor could provide the opportunity for it to phosphorylate various intracellular components as part of its mechanism of signal transduction. To approach directly the question of whether the receptor can elicit a signal while acting at an intracellular location, we have microinjected Xenopus oocytes with the insulin receptor kinase. The results indicate that an S6 protein-serine kinase is stimulated or an S6 protein-serine phosphatase inhibited by the activity of the insulin receptor, supporting the concept that the insulin receptor acting within the cell can elicit a biological response.  相似文献   

20.
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects   总被引:231,自引:0,他引:231  
Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号