首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Acetylcholine releases calcium from cytoplasmic stores and permits an influx of calcium in salivary acinar cells. The resultant rise in [Ca2+]i causes an increase in potassium permeability which is an important part of the secretory response. We have investigated the effects of 12-0-tetradecanoyl phorbol-13-acetate, a potent activator of protein kinase C, upon this regulation of potassium permeability in superfused pieces of rat submandibular salivary gland. This compound inhibited the initial [Ca2+]o-independent component of the response of acetylcholine but had no effect upon the subsequent [Ca2+]o-dependent phase. This compound does not, therefore, appear to inhibit receptor-regulated calcium influx.  相似文献   

2.
Transthyretin (TTR) is a functional protein in the pancreatic β-cell. It promotes insulin release and protects against β-cell death. We now demonstrate by ligand blotting, adsorption to specific magnetic beads, and surface plasmon resonance that TTR binds to glucose-regulated proteins (Grps)78, 94, and 170, which are members of the endoplasmic reticulum chaperone family, but Grps78 and 94 have also been found at the plasma membrane. The effect of TTR on changes in cytoplasmic free Ca2+ concentration ([Ca2+]i) was abolished if the cells were treated with either dynasore, a specific inhibitor of dynamin GTPase that blocks clathrin-mediated endocytosis, or an antibody against Grp78, that prevents TTR from binding to Grp78. The conclusion is that TTR binds to Grp78 at the plasma membrane, is internalized into the β-cell via a clathrin-dependent pathway, and that this internalization is necessary for the effects of TTR on β-cell function.  相似文献   

3.
Based on the findings that proinsulin C-peptide binds specifically to cell membranes, we investigated the effects of C-peptide and related molecules on the intracellular Ca2+ concentration ([Ca2+]i) in human renal tubular cells using the indicator fura-2/AM. The results show that human C-peptide and its C-terminal pentapeptide (positions 27–31, EGSLQ), but not the des (27–31) C-peptide or randomly scrambled C-peptide, elicit a transient increase in [Ca2+]i. Rat C-peptide and rat C-terminal pentapeptide also induce a [Ca2+]i response in human tubular cells, while a human pentapeptide analogue with Ala at position 1 gives no [Ca2+]i response, and those with Ala at positions 2–5 induce responses with different amplitudes. These results define a species cross-reactivity for C-peptide and demonstrate the importance of Glu at position 1 of the pentapeptide. Preincubation of cells with pertussis toxin abolishes the effect on [Ca2+]i by both C-peptide and the pentapeptide. These results are compatible with previous data on C-peptide binding to cells and activation of Na+,K+ATPase. Combined, all data show that C-peptide is a bioactive peptide and suggest that it elicits changes in [Ca2+]i via G-protein-coupled pathways, giving downstream enzyme effects. Received 13 May 2002; accepted 16 May 2002  相似文献   

4.
Changes in cytosolic Ca2+ play an important role in a wide array of cell types and the control of its concentration depends upon the interplay of many cellular constituents. Resting cells maintain cytosolic calcium ([Ca2+]i) at a low level in the face of steep gradients of extracellular and sequestered Ca2+. Many different signals can provoke the opening of calcium channels in the plasma membrane or in intracellular compartments and cause rapid influx of Ca2+ into the cytosol and elevation of [Ca2+]i. After such stimulation Ca2+ ATPases located in the plasma membrane and in the membranes of intracellular stores rapidly return [Ca2+]i to its basal level. Such responses to elevation of [Ca2+]i are a part of an important signal transduction mechanism that uses calcium (often via the binding protein calmodulin) to mediate a variety of cellular actions responsive to outside influences.  相似文献   

5.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   

6.
Summary The actions on amphibian embryos of UV-irradiation, exposure to Li+ or exposure to ouabain show interesting parallels with their effects on spontaneous release at the presynaptic terminals of the neuromuscular junction. It is suggested that these treatments serve to raise intracellular Ca2+ ([Ca2+ i) in these examples, and that UV-promoted abnormalities in embryogenesis are a consequence of changes in [Ca2+]i at critical stages in development.  相似文献   

7.
The cytotoxicity of cadmium (Cd) induced autophagy and apoptosis in MES-13 cells was determined by flow cytometry. Autophagy was also assessed by formation of autophagosomes and processing of LC3. Pharmacological inhibition of autophagy resulted in increased of cell viability, suggesting autophagy plays a role in cell death in Cd-treated mesangial cells. Cd also induced a rapid elevation in cytosolic calcium ([Ca2+]i ), and modulation of [Ca2+]i via treatment with IP 3R inhibitor or knockdown of calcineurin resulted in a change in the proportion of cell death, suggesting that the release of calcium from the ER plays a crucial role in Cd-induced cell death. Inhibition of Cd-induced ERK activation by PD 98059 suppressed Cd-induced autophagy, and BAPTA-AM eliminated activation of ERK. BAPTA-AM also inhibited Cd-induced mitochondrial depolarization and activation of caspases. These findings demonstrated that Cd induces both autophagy and apoptosis through elevation of [Ca2+]i, followed by Ca2+-ERK and Ca2+-mitochondria-caspase signaling pathways. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 05 July 2008; received after revision 25 August 2008; accepted 17 September 2008  相似文献   

8.
Histamine release from rat peritoneal mast cells induced by anti-IgE was essentially complete within 4–5 min. Xestobergsterol A and B, which are constituents of the Okinawan marine spongeXestospongia bergquistia Fromont, dose-dependently inhibited anti-IgE-induced histamine release from rat mast cells. The IC50 values of xestobergsterol A and B for histamine release in mast cells activated by anti-IgE were 0.07 and 0.11 M, respectively. Anti-IgE stimulated PI-PLC activity in a mast cell membrane preparation. Xestobergsterol A dose-dependently inhibited the generation of IP3 and membrane-bound PI-PLC activity. Moreover, xestobergsterol A inhibited Ca2+-mobilization from intracellular Ca2+-stores as well as histamine release in mast cells activated by anti-IgE. On the other hand, xestobergsterol B did not inhibit the membrane-bound and cytosolic PI-PLC activity, IP3 generation or the initial rise in [Ca2+]i in mast cells activated by anti-IgE. These results suggest that the mechanism of inhibition by xestobergsterol A of the initial rise in [Ca2+]i, of the generation of IP3, and of histamine release induced by anti-IgE, was through the inhibition of PI-PLC activity.  相似文献   

9.
Experiments with permeabilised platelets, and with intact platelets loaded with fluorescent Ca2+-indicators, over the past several years have greatly extended our knowledge and understanding of cytosolic Ca2+ as a platelet activator and its interactions with other cytosolic regulators. This article outlines insights, gained from the use of the fluorescent dyes, into maintenance and restoration of basal [Ca2+]i, mechanisms of receptor-mediated Ca2+-mobilisation and quantitation of [Ca2+]i/response relations in intact human platelets.  相似文献   

10.
Alcian blue and plumbagin induced transient Ca2+ release from fragmented sarcoplasmic reticulum. Dithiothreitol (DTT) and glutathione (GSH) partially blocked Ca2+ release induced by these oxidizing compounds. Pretreatment of alcian blue and plumbagin with DTT or GSH for more than 1 min was required to abolish the ability of the oxidizing compounds to release Ca2+. Mg2+ and ruthenium red completely blocked alcian blue-and plumbagin-induced Ca2+ release. These results suggest that oxidation of sulfhydryls on Ca2+ release channels induces Ca2+ release even in the presence of GSH in situ.  相似文献   

11.
M Prentki  C B Wollheim 《Experientia》1984,40(10):1052-1060
The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of 45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

12.
Calcium signaling in plants   总被引:9,自引:0,他引:9  
Changes in the cytosolic concentration of calcium ions ([Ca2+]i) play a key second messenger role in signal transduction. These changes are visualized by making use of either Ca2+-sensitive fluorescent dyes or the Ca2+-sensitive photoprotein, aequorin. Here we describe the advances made over the last 10 years or so, which have conclusively demonstrated a second messenger role for [Ca2+]i in a few model plant systems. Characteristic changes in [Ca2+]i have been seen to precede the responses of plant cells and whole plants to physiological stimuli. This has had a major impact on our understanding of cell signaling in plants. The next challenge will be to establish how the Ca2+ signals are encrypted and decoded in order to provide specificity, and we discuss the current understanding of how this may be achieved.  相似文献   

13.
Summary The O2– and Ca2+-paradoxes have a number of features in common and it is suggested that release of cytosolic proteins in both paradoxes is initiated by the activation of a sarcolemma NAD(P)H dehydrogenase which can generate a transmembrane flow of H+ and e and also oxygen radicals or recox cycling which damage ion channels and membrane proteins (phase I). Entry of Ca2+ through the damaged ion channels then exacerbates the damage by further activating this system, either directly or indirectly, and the redox cycling and/or oxygen radicals cause further damage to integral and cytoskeletal proteins of the sarcolemma resulting in microdamage to the integrity of the membrane (phase II) and the consequent release or exocytosis of cytoplasmic proteins and, under specialised condition, the blebbing of the sarcolemma. The system may be primed either by removal of extracellular Ca2+ or by raising [Ca2+]i by a variety of measures, these two actions being synergistic. The system is initially activated in the Ca2+-paradox by the membrane perturbation associated with removal of extracellular Ca2+; prolonged anoxia in the metabolically active cardiac muscle causes a depletion of the ATP supply, particularly in the absence of glucose, and hence a rise in [Ca2+]i in phase I of the oxygen paradox with the consequent activation of the NAD(P)H oxidase at the sarcolemma. Oxygen radicals are probably generated in both paradoxes and may have a partial role in the genesis of damage, but are not essential in the Ca2+-paradox which continues under anoxia. Massive entry of Ca2+ also activates an intracellularly localised dehydrogenase (probably at the SR) which produces myofilament damage by redox cycling.  相似文献   

14.
The Ca2+ ionophore ionomycin induced cytosolic [Ca2+]i elevation as well as strong activation of Cl efflux in mouse mammary epithelial cell lines expressing wild-type or mutated (deletion of phenylalaline 508) cystic fibrosis transmembrane conductance regulator (CFTR) or vector. Ionomycin-induced Cl efflux was abolished by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, whereas both activators and inhibitors of phospholipase A2 had no effect, indicating the involvement of Ca2+-dependent Cl- channels. Stimulation of arachidonic acid release by ionomycin and phorbol ester was not significantly different between wild-type or mutated cell lines, whereas vector-transfected cells exhibited a significant higher release, which was shown to be due to larger amount of immunoreactive cytosolic phospholipase A2. These results indicate that phospholipase A2 activity of C127 cells was not influenced by the presence of wild-type or mutated CFTR. Received 27 April 1999; received after revision 11 June 1999; accepted 23 July 1999  相似文献   

15.
Summary The characteristic effect of temperature on m.e.p.p. frequency at the amphibian neuromuscular junction is unaltered by the presence of Dantrolene (an agent that is believed to reduce the efflux of Ca2+ from intracellular stores) or by changes in [Ca2+]o. It is concluded that temperature affects the release system directly, with a transition temperature at about 16°C.  相似文献   

16.
Effects of extracellular magnesium ions ([Mg2+]o ) on intracellular free Mg2+ ([Mg2+]i ) and its subcellular distribution in single fission yeast cells, Schizosaccharomyces pombe, were studied with digital-imaging microscopy and an Mg2+ fluorescent probe (mag-fura-2). Using 0.44 mM [Mg2+]o , [Mg2+]i in yeast cells was 0.91±0.08 mM. Elevation of [Mg2+]o to 1.97 mM induced rapid (within 5 min) increments in [Mg2+]i (2.18±0.11 mM). Lowering [Mg2+]o to 0.06 mM, however, exerted no significant effects on [Mg2+]i (0.93±0.14 mM), at least for periods of up to 30 min. Irrespective of the [Mg2+]o used, the subcellular distribution of [Mg2+]i remained hetero geneous, i.e. where the sub-plasma membrane region >cytoplasm >nucleus. [Mg2+] in all three subcellular compartments increased significantly, two- to threefold, concomitant with [Mg2+]i when placed in 1.97 mM [Mg2+]o . We conclude that [Mg2+]i in fission yeast is maintained at a physiologic level when [Mg2+]o is low, but intracellular free Mg2+ rapidly rises when [Mg2+]o is elevated. Like most eukaryotic cells, yeast may have a Mg2+ transport system(s) which functions to maintain gradients of Mg2+ from the outside to inside the cell and among its subcellular compartments. Received 18 April 1996; received after revision 4 July 1996; accepted 26 July 1996  相似文献   

17.
Calcium (Ca2+) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Ca2+ influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca2+ from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca2+. Inside the cell, Ca2+ is controlled by the buffering action of cytosolic Ca2+-binding proteins and by its uptake and release by mitochondria. The uptake of Ca2+ in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca2+ from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na+/Ca2+ exchanger in the plasma membrane also participates in the control of neuronal Ca2+. The impaired ability of neurons to maintain an adequate energy level may impact Ca2+ signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca2+ signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca2+ signaling in the most important neurological disorders will then be considered.  相似文献   

18.
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P 3] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P 3. These enzymes terminate the signal to release Ca2+ from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P 4]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.  相似文献   

19.
Summary Internal longitudinal resistance (ri), a determinant of cardiac conduction, is affected by changes in intracellular calcium and protons. However, the role and mechanism by which H+ and Ca2+ may modulate ri is uncertain. Cable analysis was performed in cardiac Purkinje fibers to measure ri during various interventions. In some experiments, intracellular pH (pHi) was recorded simultaneously to study the pHi-ri relation. Both intracellular Ca2+ and H+ independently modified ri. However, internal resistance of cardiac fibers was insensitive to pHi changes compared to other tissues. A latent period preceded the pHi-related changes in ri and the amount of change depended upon methodology. The results suggest that direct action of protons on ri may be subordinate to other regulatory processes. Ionic regulation of internal longitudinal resistance may occur by more than one mechanism: i) direct cationic binding to sites on junctional membrane proteins; and ii) H+- or Ca2+-dependent phosphorylation of junctional proteins.  相似文献   

20.
Among the heterogeneous population of circulating hematopoietic and endothelial progenitors, we identified a subpopulation of CD133+ cells displaying myogenic properties. Unexpectedly, we observed the expression of the B-cell marker CD20 in blood-derived CD133+ stem cells. The CD20 antigen plays a role in the modulation of intracellular calcium homeostasis through signaling pathways activation. Several observations suggest that an increase in intracellular calcium concentration ([Ca2+]i) could be involved in the etiology of the Duchenne muscular dystrophy (DMD). Here, we show that a CD20-related signaling pathway able to induce an increase in [Ca2+]i is differently activated after brain derived neurotrophic factor (BDNF) stimulation of normal and dystrophic blood-derived CD133+ stem cells, supporting the assumption of a “CD20-related calcium impairment-affecting dystrophic cells. Presented findings represent the starting point toward the expansion of knowledge on pathways involved in the pathology of DMD and in the behavior of dystrophic blood-derived CD133+ stem cells. Received 15 October 2008; received after revision 27 November 2008; accepted 05 December 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号