首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Cell-cell adhesion mediated by CD8 and MHC class I molecules   总被引:30,自引:0,他引:30  
CD4 and CD8 are cell-surface glycoproteins expressed on mutually exclusive subsets of peripheral T cells. T cells that express CD4 have T-cell antigen receptors that are specific for antigens presented by major histocompatibility complex class II molecules, whereas T cells that express CD8 have receptors specific for antigens presented by MHC class I molecules (reviewed in ref. 1). Based on this correlation and on the observation that anti-CD4 and anti-CD8 antibodies inhibit T-cell function, it has been suggested that CD4 and CD8 increase the avidity of T cells for their targets by binding to MHC class II or MHC class I molecules respectively. Also, CD4 and CD8 may become physically associated with the T-cell antigen receptor, forming a higher-affinity complex for antigen and MHC molecules, and could be involved in signal transduction. Cell-cell adhesion dependent CD4 and MHC II molecules has recently been demonstrated. To determine whether CD8 can interact with MHC class I molecules in the absence of the T-cell antigen receptor, we have developed a cell-cell binding assay that measures adhesion of human B-cell lines expressing MHC class I molecules to transfected cells expressing high levels of human CD8. In this system, CD8 and class I molecules mediate cell-cell adhesion, showing that CD8 directly binds to MHC class I molecules.  相似文献   

2.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

3.
K Saizawa  J Rojo  C A Janeway 《Nature》1987,328(6127):260-263
CD4 is a molecule expressed on the surface of T lymphocytes which recognize foreign protein antigens in the context of class II major histocompatibility complex (MHC) molecules. Recognition of antigen:class II MHC complexes by CD4+ T cells can be inhibited by anti-CD4 (ref. 3). Nevertheless, specific recognition of the antigen:Ia complex is clearly a function of the T-cell receptor, which is composed of CD3 and the variable polypeptides alpha and beta. Thus, it has been proposed that CD4 serves an accessory function in the interaction of CD4+ T cells and Ia-bearing antigen-presenting cells by binding to non-polymorphic portions of class II MHC molecules and stabilizing the cell interaction. Based on our observation that anti-CD4 could inhibit activation of a cloned line of CD4+ T cells by antibodies directed at a particular epitope on the variable region of the T-cell receptor, we have recently proposed that CD4 is actually part of the T-cell antigen recognition complex, physically associated with CD3:alpha:beta. But numerous studies showing that CD3 and CD4 are not stably associated on the T-cell surface would appear to contradict this model. Here we show that anti-T-cell-receptor antibodies can co-modulate expression of the T-cell receptor and CD4, and that the monovalent Fab fragment of such an anti-T-cell-receptor antibody can, in conjunction with bivalent anti-CD4 antibody, generate an activating signal for the T cell. These findings provide further evidence for a physical association of the T-cell receptor complex and CD4.  相似文献   

4.
Antigens presented to CD4+ T cells derive primarily from exogenous proteins that are processed into peptides capable of binding to class II major histocompatibility complex (MHC) molecules in an endocytic compartment. In contrast, antigens presented to CD8+ T cells derive mostly from proteins processed in the cytosol, and peptide loading onto class I MHC molecules in an early exocytic compartment is dependent on a transporter for antigen presentation encoded in the class II MHC region. Endogenous cytosolic antigen can also be presented by class II molecules. Here we show that, unlike class I-restricted recognition of antigen, HLA-DR1-restricted recognition of cytosolic antigen occurs in mutant cells without a transporter for antigen presentation. In contrast, DR1-restricted recognition of a short cytosolic peptide is dependent on such a transporter. Thus helper T-cell epitopes can be generated from cytosolic antigens by several mechanisms, one of which is distinct from the classical class I pathway.  相似文献   

5.
The CD4 and CD8 molecules are transmembrane glycoproteins expressed by functionally distinct subsets of mature T cells. CD4+ and CD8+ T cells recognize antigens on major histocompatibility complex (MHC) class II-bearing and class I-bearing target cells respectively. The ability of monoclonal antibodies against CD4 and CD8 to block antigen recognition by T cells, as well as cell-cell adhesion assays, indicate that CD4 and CD8 bind to nonpolymorphic determinants of class II or class I MHC. Here we demonstrate that soluble recombinant HLA-DR4 molecules from insect cells and HLA-DR-derived peptides bind to immobilized recombinant soluble CD4. CD4 binds recombinant soluble DR4 heterodimers, as well as the soluble DR4-beta chain alone. Furthermore, two out of twelve DR4-beta peptides could interact specifically with CD4. These findings show that CD4 interacts with a region of MHC class II molecules analogous to a previously identified loop in class I MHC proteins that binds CD8 (refs 8, 9).  相似文献   

6.
High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR   总被引:37,自引:0,他引:37  
J D Fraser 《Nature》1989,339(6221):221-223
Staphylococcal enterotoxins A-E (refs 1-3), toxic shock toxin (TST-1) (ref. 1), a product of Mycoplasma arthritidis and the Mls antigens provoke dramatic T-cell responses. All are extremely potent polyclonal mitogens stimulating a large proportion of both murine and human CD4+ and CD8+T cells although activity is tightly restricted by major histocompatibility complex (MHC) class II antigens. The murine T-cell response to staphylococcal enterotoxin B (SEB) has recently been shown to involve only those T cells expressing T-cell receptor V beta 3, 8.1, 8.2 and 8.3 domains, a situation which closely mimics the response to Mls antigens. This paper examines the initial events in SEA and SEB T-cell activation and shows that MHC restriction results from a direct high affinity binding by intact SEA and SEB to the same site on MHC class II HLA-DR antigens.  相似文献   

7.
M K Newell  L J Haughn  C R Maroun  M H Julius 《Nature》1990,347(6290):286-289
Effector T cells are restricted to recognizing antigens associated with major histocompatibility complex (MHC) molecules. Specific recognition is mediated by the alpha beta heterodimer of the T-cell receptor (TCR)/CD3 complex, although other membrane components are involved in T-cell antigen recognition and functions. There has been much controversy in this regard over the part played by the CD4 glycoprotein. It is known that expression of CD4 correlates closely with the cell's ability to recognize antigens bound to class II MHC molecules and that CD4 can bind to class II molecules. Also monoclonal antibodies to CD4 can modify signals generated through the TCR/CD3 complex. It has therefore been proposed that CD4 binds to class II molecules, coaggregates with the TCR-CD3 complex and aids the activation of T cells. But given that TCR can itself impart restriction on the cell, it remains unclear whether the contribution of CD4-derived signals to those generated through the TCR alpha beta-CD3 complex is central to this activation. Here we report that when preceded by ligation of CD4, signalling through TCR alpha beta results in T cell unresponsiveness due to the induction of activation dependent cell death by apoptosis. These results imply that CD4 is critically involved in determining the outcome of signals generated through TCR, and could explain why the induction of effector T cells needs to be MHC-restricted.  相似文献   

8.
D Vidovi?  M Rogli?  K McKune  S Guerder  C MacKay  Z Dembi? 《Nature》1989,340(6235):646-650
Distinct T-lymphocyte subsets recognize antigens in conjunction with different classes of major histocompatibility complex (MHC) glycoproteins using the T-cell receptor (TCR), a disulphide-linked heterodimer associated with the CD3 complex on the cell surface. In general, class I and class II MHC products provide a context for the recognition of foreign antigens by CD8+ and CD4+ T cells, respectively. This recognition seems to be largely dependent on alpha beta TCR heterodimers, whereas the function of the second gamma delta TCR, present on a minor subpopulation of cells, is still unknown. In the mouse, the existence of six cell-surface MHC class I products (K, D, L, Qa-1, Qa-2 and Tla) has been firmly established by serological, biochemical and genetic evidence. So far, only the most polymorphic of them, K, D and L ('classical' class I) have been reported as restriction elements for T-cell recognition of foreign antigens. The function of the relatively invariant Qa and Tla molecules remains unknown. We have made a T-helper cell hybridoma clone (DGT3) that recognizes synthetic copolymer poly(Glu50Tyr50) in the context of Qa-1 cell surface product, and has a CD4-CD8- phenotype. Our studies indicate that DGT3 cells express the gamma delta TCR on the cell surface, implicating its role in Qa-1-restricted antigen recognition. This is the first evidence that T cells can recognize foreign antigen in association with self Qa product, confirming that Qa molecules not only topologically, but also functionally, belong to the MHC.  相似文献   

9.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

10.
N Abraham  M C Miceli  J R Parnes  A Veillette 《Nature》1991,350(6313):62-66
Lymphocyte-specific tyrosine protein kinase p56lck is physically associated with CD4 and CD8 T-cell surface molecules, suggesting that it may transduce CD4/CD8-triggered tyrosine phosphorylation signals during antigen stimulation. Indeed, antibody-mediated aggregation of CD4 (to mimic interaction with its ligand, major histocompatibility complex (MHC) class II molecules), rapidly elevates the kinase activity of p56lck and is associated with marked changes in tyrosine protein phosphorylation. Genetic analyses suggest that the interaction of CD4/CD8 with p56lck results in a positive signal during antigen-induced T-cell activation. To evaluate directly the role of p56lck in T-cell activation, we introduced a constitutively activated form of Lck protein (tyrosine 505 to phenylalanine 505 mutant); in a CD4-negative, MHC-class II restricted mouse T-cell hybridoma. We report here that, as for transfection of CD4, expression of the Lck mutant enhanced T-lymphocyte responsiveness. This finding provides direct evidence that p56lck can positively regulate T-cell functions and that it mediates at least some of the effects of CD4 and CD8 on T-cell activation.  相似文献   

11.
Interaction between CD4 and class II MHC molecules mediates cell adhesion   总被引:89,自引:0,他引:89  
C Doyle  J L Strominger 《Nature》1987,330(6145):256-259
The CD4 glycoprotein is expressed on T-helper and cytotoxic lymphocytes which are restricted to class II major histocompatibility complex (MHC) antigens on target cells. Antibody inhibition studies imply that CD4 acts to increase the avidity of effector-target cell interactions. These observations have led to the speculation that CD4 binds to a monomorphic class II antigen determinant, thereby augmenting low affinity T-cell receptor-antigen interactions. However, no direct evidence has been presented indicating that CD4 and class II molecules interact. To address this issue, we have used a vector derived from simian virus 40 (SV40) to express a complementary DNA (cDNA) encoding the human CD4 glycoprotein. When CV1 cells expressing large amounts of the CD4 protein at the cell surface are incubated with human B cells bearing MHC-encoded class II molecules, they are bound tightly to the infected monolayer, whereas mutant B cells which lack class II molecules fail to bind. Furthermore, the binding reaction is specifically inhibited by anti-class II and anti-CD4 antibodies. Thus, the CD4 protein, even in the absence of T-cell receptor-antigen interactions, can interact directly with class II antigens to function as a cell surface adhesion molecule.  相似文献   

12.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

13.
N Suciu-Foca  E Reed  P Rubinstein  W MacKenzie  A K Ng  D W King 《Nature》1985,318(6045):465-467
T lymphocytes possessing helper function produce soluble factors that greatly augment B-cell proliferation and differentiation into antibody-secreting cells. In humans the subset of T lymphocytes bearing the T4 surface antigen comprises most of the cells that display helper activity and recognize class II antigens of the major histocompatibility complex (MHC), while the subset bearing the T8 antigen comprises T cells recognizing class I MHC antigens and exhibiting cytotoxic or suppressor function. Monoclonal antibodies to T4 or T8 greatly inhibit the cognitive and effector function of cells with the corresponding phenotype. This function/phenotype correlation is not absolute, however, for there are many examples of T8-positive clones that recognize MHC class II antigens and have helper activity, as well as of T4-positive clones with suppressor or cytotoxic function. Recently a family of cell-surface neoantigens, which might be relevant to T-cell function and which are present on activated but not on resting T lymphocytes, has been identified in mouse and humans using monoclonal antibodies. Some of these antibodies block the cytolytic activity of alloreactive T-cell clones, suggesting the possible involvement of such molecules in the activation of cytotoxic T-cell clones or in the lytic process itself. We now describe a similar late-differentiation antigen (LDA1) that is expressed by human T lymphocytes only following activation and is recognized by a monoclonal antibody that inhibits the antibody-inducing helper function of T lymphocytes.  相似文献   

14.
Apolipoprotein-mediated pathways of lipid antigen presentation   总被引:1,自引:0,他引:1  
Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells. Because CD1 molecules survey endocytic compartments, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens.  相似文献   

15.
Cytotoxic T lymphocytes against a soluble protein   总被引:3,自引:0,他引:3  
U D Staerz  H Karasuyama  A M Garner 《Nature》1987,329(6138):449-451
Thymus-derived (T) lymphocytes recognize antigen in conjunction with surface glycoproteins encoded by major histocompatibility complex (MHC) genes. Whereas fragments of soluble antigens are presented to T helper lymphocytes (TH), which carry the CD4 antigen, in association with class II MHC molecules, CD8-bearing cytotoxic T lymphocytes (CTL) usually see cellular antigens (for instance virally-encoded proteins) in conjunction with MHC class I molecules. The different modes of antigen presentation may result from separate intracellular transport: vesicles containing class II molecules are thought to fuse with those carrying endocytosed soluble proteins. Class I molecules, in contrast, can only pick up degradation products of intracellular proteins (see refs 7 and 8). This makes biological sense; during an attack of a virus, class I-restricted CTL destroy infected cells and class II-restricted TH guide the humoural response to neutralize virus particles and toxins. But here we provide evidence that CTL specific for ovalbumin fragments can be induced with soluble protein, and that intracellular protein degradation provides epitopes recognized by these CTL. These findings suggest the existence of an antigen presenting cell that takes up soluble material and induces CTL.  相似文献   

16.
E P Reich  R S Sherwin  O Kanagawa  C A Janeway 《Nature》1989,341(6240):326-328
Insulin-dependent diabetes mellitus is widely believed to be an autoimmune disease. Recent onset diabetics show destruction of insulin-secreting pancreatic beta-cells associated with a lymphocytic infiltrate (insulitis), with autoantibodies to beta-cells being found even before the onset of symptoms. Susceptibility to the disease is strongly influenced by major histocompatibility complex (MHC) class II polymorphism in both man and experimental animal models such as the non-obese diabetic (NOD) mouse. As MHC class II molecules are usually associated with dominant immune responsiveness, it was surprising that introduction of a transgenic class II molecule, I-E, protected NOD mice from insulitis and diabetes. This could be explained by a change either in the target tissue or in the T cells presumed to be involved in beta-cell destruction. Recently, several studies have shown that I-E molecules are associated with ontogenetic deletion of T cells bearing antigen/MHC receptors encoded in part by certain T-cell receptor V beta gene segments. To determine the mechanism of the protective effect of I-E, we have produced cloned CD4+ and CD8+ T-cell lines from islets of recently diabetic NOD mice. These cloned lines are islet-specific and pathogenic in both I-E- and I-E+ mice. Both CD4+ and CD8+ cloned T cells bear receptors encoded by a V beta 5 gene segment, known to be deleted during development in I-E expressing mice. Our data provide, therefore, an explanation for the puzzling effect of I-E on susceptibility to diabetes in NOD mice.  相似文献   

17.
R Ceppellini  G Frumento  G B Ferrara  R Tosi  A Chersi  B Pernis 《Nature》1989,339(6223):392-394
T cells recognize protein antigens as fragments (peptides) held in a defined binding site of class I or class II major histocompatibility (MHC) molecules. The formation of complexes between various immunologically active peptides and different MHC molecules has been demonstrated directly in binding studies between the peptides and solubilized, purified molecules of class II MHC. Studies with intact cells, living or fixed, have not directly demonstrated the binding of the peptides to MHC molecules on antigen-presenting cells, but the formation of such complexes has been shown indirectly through the capacity of antigen-presenting cells to stimulate specific T cells. Here we report evidence that supports directly the binding of radiolabelled influenza matrix peptide 17-29 to products of the human class II MHC locus HLA-DR, on living homozygous B-cell lines, and we show that the kinetics of such binding is much faster with living cells than with fixed cells. Furthermore, whereas the peptide reacts with HLA-DR molecules of all alleles, it binds preferentially to DR1, the restricting element in antigen presentation.  相似文献   

18.
H G Rammensee  M J Bevan 《Nature》1984,308(5961):741-744
Mature T cells respond to foreign antigens in the context of self major histocompatibility complex (MHC)-encoded products: T helper cells recognize antigen in the context of class II molecules, while cytotoxic T cells (CTL) recognize antigen plus class I molecules. Recent evidence suggests that the MHC-restricted T cell is unable to recognize either the foreign antigen or the self-MHC product alone, but only a complex of the two. Unresponsiveness to self antigens--self tolerance--implies the deletion or suppression of clones of T cells having reactivity to self antigens. Here we demonstrate the presence in normal mice of T cells which recognize self antigens together with allogeneic MHC products. This finding suggests the MHC restriction of T-cell recognition during the entire process of T-cell ontogeny, that is, MHC restriction of self tolerance.  相似文献   

19.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

20.
Direct observation of ligand recognition by T cells   总被引:18,自引:0,他引:18  
Irvine DJ  Purbhoo MA  Krogsgaard M  Davis MM 《Nature》2002,419(6909):845-849
The activation of T cells through interaction of their T-cell receptors with antigenic peptide bound to major histocompatibility complex (MHC) on the surface of antigen presenting cells (APCs) is a crucial step in adaptive immunity. Here we use three-dimensional fluorescence microscopy to visualize individual peptide-I-E(k) class II MHC complexes labelled with the phycobiliprotein phycoerythrin in an effort to characterize T-cell sensitivity and the requirements for forming an immunological synapse in single cells. We show that T cells expressing the CD4 antigen respond with transient calcium signalling to even a single agonist peptide-MHC ligand, and that the organization of molecules in the contact zone of the T cell and APC takes on the characteristics of an immunological synapse when only about ten agonists are present. This sensitivity is highly dependent on CD4, because blocking this molecule with antibodies renders T cells unable to detect less than about 30 ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号