首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
<正>预计未来的超大型强子对撞机(VLHC),其加速环的周长将达到100公里,产生的能量是目前大型强子对撞机的7倍。2008年在欧洲启动大型强子对撞机(LHC)时,粒子物理学家们没有奢求要一台更大型的强子对撞机。当2012年LHC完成了最初的使命——发现希格斯玻色子,物理学家开始兴奋的憧憬设计一台机器来取代它:超大型强子对撞机(VLHC)。  相似文献   

2.
欧洲核子研究中心在2012年发现了希格斯玻色子,成为物理学史上一个新里程碑.目前,全球高能物理界正在积极推动下一代高能正负电子对撞机的预研工作,以便对新发现的希格斯玻色子进行精确测量并探索标准模型之外的新物理.本文简要回顾了历史上能量前沿正负电子对撞机的发展历程及其作用,包括历史上第一台正负电子对撞机Ad A的诞生,在Ad A基础上诞生的ACO,VEPP-II,ADONE,以及后来的SPEAR,DORIS,CESR,TRISTAN,再到至今为止最大的环形正负电子对撞机LEP等能量前沿正负电子对撞机;并进一步介绍了目前国际高能物理界正在预研的未来正负电子对撞机的几种设计方案,如ILC,CLIC,TLEP等,其中包括我国自主提出的下一代环型正负电子对撞机CEPC.  相似文献   

3.
<正>1972年,我国政府和科学界面临着一个重大选择:是否建设大型对撞机。对撞机是现代物理研究的基础设备,是研究物质基础结构和相互作用的探针。二战之后,近一半的诺贝尔物理学奖颁发给了与对撞机相关的研究成果。但大型对撞机需要各种高新技术的支持,耗资巨大,建设和操作难度极高。  相似文献   

4.
1982年初,欧洲核子研究中心决定建造一台世界上最大的高能正负电子对撞机——莱泼对撞机,此机建成后,对高能物理实验将会起更大的作用。《西欧“莱泼”计划》一文,对菜泼对撞机的实验装置和实验目标等均有详述。  相似文献   

5.
“北京正负电子对撞机”详情如何?欲知者请读《北京正负电子对撞机》一文。该文据中国科学院高能物理研究所的有关总结报告写成。  相似文献   

6.
一场碰撞的开始? 2008年夏天,物理学家们聚集在位于瑞士日内瓦郊外的欧洲核子研究中心(CERN),希望完工不久的超级粒子对撞机--大型强子对撞机(LHC)能够发现新的粒子,进而解决一些现有的难题.  相似文献   

7.
<正>欧洲核子中心7月4日宣布了一种质量约为125~126GeV的"疑似"希格斯玻色子在大型强子对撞机(LHC)的两个子探测器ATLAS和CMS中被发现,并达到了5σ的标准差。  相似文献   

8.
●自从首次预测希格斯粒子存在的50年以来,科学家终于宣布,世界上最期望已久的粒子终于在大型强子对撞机上被检测到。在瑞士日内瓦附近欧洲核子研究中心(CERN)的礼堂内,充满了经久不息的热烈掌声、口哨声和欢呼  相似文献   

9.
欧洲核子研究中心宣布,中国科学家参与的国际性大科学工程之一——大型强子对撞机于2010年3月30日日内瓦时间13时06分对撞成功。在跨越日内瓦市郊、瑞士和法国边界的大型强子对撞机(LHC)上,总能量为7万亿电子伏特的两个束流对撞成功。这次迄今为止世界上能量最高的对撞,标志着大型强子对撞机物理研究的启动,拉开了粒子物理新时代的序幕,人类开始寻找占宇宙成分96%的暗物质和暗能量。  相似文献   

10.
北京正负电子对撞机工程(BEPC)一直得到邓小平同志、党中央和国务院的直接关怀与支持.1983年12月中央书记处决定将对撞机工程列为国家重点建设项目,并成立了由中国科学院、国家计委、国家经委、北京市负责同志组成的工程领导小组.  相似文献   

11.
2008年9月10日.欧洲核子研究中心的大型强子对撞机正式启动,将第一束质子束流注入对撞机。这个本来是高能物理学家才能完全理解其操作原理和应用价值的大家伙,却成为许多不懂强子为何物者热议的话题。人们之所以对这个仪器高度关注.不是它具有高深的物理学原理,而是它必然会改变我们的生活。一些人认为,对撞机可能生成黑洞,毁灭世界。然而,更多的人认为,这台仪器会给我们生活带来一些实实在在的好处。  相似文献   

12.
王贻芳  阮曼奇 《自然杂志》2017,39(6):391-400
首先对粒子物理的基本目标、实验方法、研究现状以及粒子标准模型进行了简要介绍。解释了为何寻求超出标准模型的物理信号是现阶段物理学研究的核心任务。接着着重介绍了首个在粒子物理实验中被证实的超出标准模型的实验信号、中微子振荡及其实验测量,以及通向新物理原理的探针——希格斯(Higgs)玻色子。最后,介绍了高能物理实验设施,特别是现有的北京正负电子对撞机项目和未来的环形正负电子对撞机项目。对于后者,除了明晰其突出的物理学意义和物理学性能,还阐述了其对科学技术的促进作用。  相似文献   

13.
<正>新年之际,《自然》杂志对2015年科学动向进行了展望,粒子加速器、气候协议、终结埃博拉、矮行星等十个项目榜上有名。粒子加速器漫长的等待已经结束:停工两年之后,大型强子对撞机(LHC)将于2015年3月重新启动。该对撞机位于瑞士日内瓦欧洲核子研究委员会粒子物理实验室,此次启动它将以13万亿电子伏的能量进行撞击,而这几乎是现有纪录的两倍。科学家们希望额外的火力能够帮助对撞机发现新的现象,以填  相似文献   

14.
揭秘强子     
它是世界上最大的大型强子对撞机,位于日内瓦附近、瑞士和法国交界地区地下100米深处的环形隧道内,隧道总长约为27千米,隧道内安放了4个探测器和大型离子对撞机。中国参与了所有4个探测器的建造和实验。  相似文献   

15.
2012年7月4日,英国科学家宣布发现了一种与希格斯玻色子类似的粒子。现在,借助大型强子对撞机寻找希格斯玻色子的研究小组报告称,实验结果的确定性水平达到5.9西格马,这进一步证实了他们极有可能发现了这种有着"上帝粒子"之称的粒子。科学家寻找上帝粒子已经有数十年历史,这种粒子是标准物理学模型中缺失的最后一环,它能够解释物质为何拥有质量。大型强子对撞机通过质子束对撞产生巨大能量,进而形成上帝粒子。但这种粒子瞬间即逝,衰变成其他可以被捕获和进行分析的粒子,或  相似文献   

16.
继欧洲核子研究中心(CERN)打造大型强子对撞机(LHC)后.物理学家又开始设计它的后继者。据称,这台名为“国际直线加速器(ILC)”的对撞机花费为82亿美元,ILC首批数据将于本世纪20年代中后觏产生。  相似文献   

17.
陆元荣 《世界科学》1997,(10):11-11
高能带电粒子束物理对探索物质世界更深层次的微观结构、核反应堆废料的处理、核燃料的再生、惯性压缩聚变、未来的加速器驱动的洁净核能源等将产生深远的影响。1996年2月25日美国费米国家实验室宣布1994年~1996年Tevatron对撞机运行终止,支持固定靶实验的Tevatron改造开始。Tevatron质子-反质子对撞机长时间运行性能稳定、综合亮度为150Ph'的质子和反质子束成功输送至CDF和DO探测器。对撞机的峰值亮度达2.SX10"cm'·s-',该参数是原对撞机亮度的25倍,运行时数据的累积导致了上夸克的发现。1996年5月24日,美国官方正式宣布了"连…  相似文献   

18.
作为高能物理的重要分支,重味物理在精确检验标准模型和寻找可能的新物理信号方面发挥着重要作用.近20年来,随着B介子工厂、北京正负电子对撞机和西欧大型强子对撞机的运行,重味物理的研究取得了重大进展.两个B介子工厂发现的B介子系统衰变中的电荷-宇称联合对称性(charge conjugation and parity,CP)破坏,将有助于进一步研究宇宙中正反物质不对称性.中性正反粒子的质量差有助于进一步判定新物理的能标;重味介子非轻衰变的研究使得对量子色动力学以及因子化的研究达到新的高度;更有趣的是,目前重味物理中出现的各种反常,如RK(*)和R(D(*)),可能是新物理存在的迹象.除此之外,重味物理还是研究新强子态的重要场所.近年来在北京谱仪(Beijing spectrometer,BES-III)、B介子工厂以及LHC底夸克侦测器(large hadron collider beauty,LHCb)上发现的众多奇特强子态为研究夸克模型和量子色动力学提供了新的动力.2018年,高精度对撞机Belle-II将开机运行,国际直线对撞机、环形正负电子对撞机、超级Z工厂也在积极推进,它们在重味物理上都具有各自的优势.未来这些高精度、高能量对撞机会使重味物理进入新的黄金时期.  相似文献   

19.
<正>自2012年发现希格斯玻色子以来,大型强子对撞机还未发现新的粒子,但物理学家表示,人类仍然可以从希格斯粒子中了解很多东西。2012年,粒子在大型强子对撞机(LHC)27千米长的圆形隧道中相撞,产生了希格斯玻色子。希格斯玻色子是粒子物理学标准模型所预测的最后一个失踪粒子,也是将数十年前的一组方程组合在一起的关键所在。但在大型强子对撞机上还没有发现其他新的粒子,这为人类留下了许多标准模型无法解开的宇宙谜团。一场关于是否要  相似文献   

20.
正《2020欧洲粒子物理学战略》的目标之一是选择一个希格斯工厂,对加速器和探测器进行研发,开展项目可行性研究并改善环境的可持续性。2020年6月,欧洲核子研究中心(CERN)理事会全票通过了《2020欧洲粒子物理学战略》。新战略把建造正负电子对撞机和未来环形对撞机(FCC)作为最高优先事项。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号