首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
This review describes the enzymes involved in human pyridine nucleotide metabolism starting with a detailed consideration of their major kinetic, molecular and structural properties. The presentation encompasses all the reactions starting from the de novo pyridine ring formation and leading to nicotinamide adenine dinucleotide (NAD+) synthesis and utilization. The regulation of NAD+ homeostasis with respect to the physiological role played by the enzymes both utilizing NAD+ through the nonredox NAD+-dependent reactions and catalyzing the recycling of the common product, nicotinamide, is discussed. The salient features of other enzymes such as NAD+ pyrophosphatase, nicotinamide mononucleotide 5-nucleotidase, nicotinamide riboside kinase and nicotinamide riboside phosphorylase, described under miscellaneous, are likewise presented.Received 30 April 2003; received after revision 9 June 2003; accepted 20 June 2003  相似文献   

3.
Nicotinamide (NAM), a form of vitamin B3, plays essential roles in cell physiology through facilitating NAD+ redox homeostasis and providing NAD+ as a substrate to a class of enzymes that catalyze non-redox reactions. These non-redox enzymes include the sirtuin family proteins which deacetylate target proteins while cleaving NAD+ to yield NAM. Since the finding that NAM exerts feedback inhibition to the sirtuin reactions, NAM has been widely used as an inhibitor in the studies where SIRT1, a key member of sirtuins, may have a role in certain cell physiology. However, once administered to cells, NAM is rapidly converted to NAD+ and, therefore, the cellular concentration of NAM decreases rapidly while that of NAD+ increases. The result would be an inhibition of SIRT1 for a limited duration, followed by an increase in the activity. This possibility raises a concern on the validity of the interpretation of the results in the studies that use NAM as a SIRT1 inhibitor. To understand better the effects of cellular administration of NAM, we reviewed published literature in which treatment with NAM was used to inhibit SIRT1 and found that the expected inhibitory effect of NAM was either unreliable or muted in many cases. In addition, studies demonstrated NAM administration stimulates SIRT1 activity and improves the functions of cells and organs. To determine if NAM administration can generate conditions in cells and tissues that are stimulatory to SIRT1, the changes in the cellular levels of NAM and NAD+ reported in the literature were examined and the factors that are involved in the availability of NAD+ to SIRT1 were evaluated. We conclude that NAM treatment can hypothetically be stimulatory to SIRT1.  相似文献   

4.
Summary Camphor at <8 moles/mg protein reduced the rate of oxygen consumption by rat liver mitochondria. The effect occurs only with NAD+-linked substrates. Succinate linked respiration was inhibited but this appears to be caused by some conversion of succinate to malate. At higher levels, camphor increases oxygen consumption with succinate substrate, by uncoupling at site II.Acknowledgment. D.F.G.-C. is grateful to the New Zealand Cancer Society (Wellington Branch), for financial support. We thank Mrs E. Dye for technical assistance and Dr W. Jordan for valuable discussions.  相似文献   

5.
Mitochondria contain a specific Ca2+ release pathway which operates when oxidized mitochondrial pyridine nucleotides are hydrolyzed. NAD+ hydrolysis and therefore Ca2+ release is possible when some vicinal thiols are cross-linked. Here we report that the thiol oxidant peroxovanadate inhibits the specific Ca2+ release pathway. In mitochondria, peroxovanadate causes a complete loss of reduced glutathione, which is not accompanied by formation of glutathione disulfide, and a partial loss of protein thiols. In model reactions, peroxovanadate oxidizes reduced glutathione predominantly to the sulfonate derivative, but does not react with glutathione disulfide. When the vicinal thiols relevant for Ca2+ release are cross-linked, Ca2+ release is no longer inhibited by peroxovanadate. Conversely, pretreatment of mitochondria with peroxovanadate makes them insensitive to compounds promoting the disulfide state. These results suggest that peroxovanadate inhibits the prooxidant-induced Ca2+ release from mitochondria by (i) depleting mitochondria of reduced glutathione and (ii) oxidizing the vicinal thiols relevant for Ca2+ release to a state higher than disulfide, presumably the sulfonate state. The findings provide further insight into the regulation of Ca2+ release from intact mitochondria, and may be relevant for a better understanding of the action of peroxovanadate in cells, where the compound can be insulin mimetic. Received 28 March 2002; received after revision 8 May 2002; accepted 15 May 2002  相似文献   

6.
Summary Unlike other NAD+-dependent dehydrogenases, octopine dehydrogenase was not bound by blue Sepharose. A rapid 2-step purification procedure (gel filtration on Sephadex G-100 followed by affinity chromatography on blue Sepharose) resulted in a final preparation of octopine dehydrogenase which had a sp. act. of 65 units/mg protein and was free of contaminating NAD+-oxidoreductases. This preparation has been used successfully for the estimation of phospho-L-arginine, L-arginine and octopine in perchloric acid extracts.Supported by a grant from the Deutsche Forschungsgemeinschaft (Ga 241/1).  相似文献   

7.
Résumé L'effet de la NADH et NAD+ sur la protéolyse de la lacticodéhydrogénase isoenzyme 1 (LDH 1) et isoenzyme 5 (LDH 5) par la trypsine fut étudié. Les résultats montrent que la NAD+ exerce une protection contre la protéolyse de la LDH 1. Mais ni la NADH ni la NAD+ ne protègent contre la protéolyse de la LDH 5.  相似文献   

8.
9.
10.
Oncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD+ and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD+-salvage, accompanies the changes in NAD(H) during tumorigenesis. Here, we show by genetic and pharmacological inhibition of NAMPT in glioma cells that fluctuation in intracellular [NAD(H)] differentially affects cell growth and morphodynamics, with motility/invasion capacity showing the highest sensitivity to [NAD(H)] decrease. Extracellular supplementation of NAD+ or re-expression of NAMPT abolished the effects. The effects of NAD(H) decrease on cell motility appeared parallel coupled with diminished pyruvate-lactate conversion by lactate dehydrogenase (LDH) and with changes in intracellular and extracellular pH. The addition of lactic acid rescued and knockdown of LDH-A replicated the effects of [NAD(H)] on motility. Combined, our observations demonstrate that [NAD(H)] is an important metabolic component of cancer cell motility. Nutrient or drug-mediated modulation of NAD(H) levels may therefore represent a new option for blocking the invasive behavior of tumors.  相似文献   

11.
How metabolism and epigenetics are molecularly linked and regulate each other is poorly understood. In this review, we will discuss the role of direct metabolite-binding to chromatin components and modifiers as a possible regulatory mechanism. We will focus on globular macro domains, which are evolutionarily highly conserved protein folds that can recognize NAD+-derived metabolites. Macro domains are found in histone variants, histone modifiers, and a chromatin remodeler among other proteins. Here we summarize the macro domain-containing chromatin proteins and the enzymes that generate relevant metabolites. Focusing on the histone variant macroH2A, we further discuss possible implications of metabolite binding for chromatin function.  相似文献   

12.
Summary In isolated mitochondria of heart muscle from rabbits and oxen there is, under suitable conditions, an accumulation of Ca++, which is significantly enhanced by elevating the K+/Na+ quotient of the incubation medium. K-strophanthine (10–5–10–7) does not influence the accumulation of Ca++ by the mitochondria of heart muscle. Therefore the intracellular increase in exchangeable Ca++ observed after digitalis-glycosides could be explained by a decrease of the intracellular K+/Na+ quotient, which is caused by inhibition of the membrane ATPase and diminishes the capacity for Ca++ accumulation in mitochondria.  相似文献   

13.
Many have hypothesized that cell death in Parkinsons disease is via apoptosis and, specifically, by the mitochondrial-mediated apoptotic pathway. We tested this hypothesis using a mouse dopaminergic cell line of mesencephalic origin, MN9D, challenged with the Parkinsonism-causing neurotoxin MPP+ (1-methyl-4-phenylpyridinium ion). Apoptosis was the main mode of cell death when the cells were subjected to MPP+ treatment under serum-free conditions for 24 h. Caspase-3 and caspase-9, however, were not activated, thus indicating the existence of alternate or compensatory cell death pathway(s) in dopaminergic neuronal cells. Using caspase inhibitors, we demonstrated that these pathways involve caspase-2, –8, –6 and –7. A time-course study indicated that activation of caspase-2 and –8 occurred upstream of caspase-6 and caspase-7. Upon MPP+ challenge, the apoptosis-inducing factor was translocated from the mitochondria into the MN9D cytosol and nucleus. These results suggest the existence of alternative apoptotic pathways in dopaminergic neurons.Received 20 September 2004; received after revision 5 November 2004; accepted 22 November 2004  相似文献   

14.
Summary Weak and strong organic bases behave in an opposite manner in respect to several mitochondrial functions. The former induce a catalytic exchange with K+ in valinomycon-treated, respiratory-inhibited mitochondria, and act as uncouplers in respiring mitochondria. The latter induce a stoicheometric exchange with K+ and are actively taken up by respiring mitochondria.  相似文献   

15.
The ability of nonprotein thiols to modulate rates of protein synthesis was investigated in isolated rat hepatocytes. Addition of cysteine stimulates protein labelling by [14C] Leucine. Glutahione depletion, induced by in vivod administration of L-buthionine sulfoximine and diethylmaleate, did not alter the effect of cysteine, although it decreased the rate of protein synthesis by 32%. The effect of cysteine on protein synthesis does not seem to be related to a perturbatin of the redox state of the NAD+/NADH system or to changes in the rate of gluconeogenic pathway. The following observations indicate that cysteine may stimulate protein syntheis by increasing intracellular levels of aspartate: 1. Amino-oxyacetate, an inhibitor of pyridoxyal-dependent enzymes, inhibits protein labelling and decreases aspartate cellular content, whereas most amino acids accumulate or remain unchanged; 2. Cysteine, in the absence or in the presence of amino-ocycetate, stimulates protein labelling and induces aspartate accumulation, although mot amino acids diminish or remain unchanged.  相似文献   

16.
Acetyl-coenzyme A synthetase (AMP forming)   总被引:1,自引:0,他引:1  
Acetyl-coenzyme A synthetase (AMP forming; Acs) is an enzyme whose activity is central to the metabolism of prokaryotic and eukaryotic cells. The physiological role of this enzyme is to activate acetate to acetyl-coenzyme A (Ac-CoA). The importance of Acs has been recognized for decades, since it provides the cell the two-carbon metabolite used in many anabolic and energy generation processes. In the last decade researchers have learned how carefully the cell monitors the synthesis and activity of this enzyme. In eukaryotes and prokaryotes, complex regulatory systems control acs gene expression as a function carbon flux, with a second layer of regulation exerted posttranslationally by the NAD+/sirtuin-dependent protein acetylation/deacetylation system. Recent structural work provides snapshots of the dramatic conformational changes Acs undergoes during catalysis. Future work on the regulation of acs gene expression will expand our understanding of metabolic integration, while structure/function studies will reveal more details of the function of this splendid molecular machine.Received 4 December 2003; received after revision 2 March 2004; accepted 16 March 2004  相似文献   

17.
CD8+ T lymphocytes screen the surface of all cells in the body to detect pathogen infection or oncogenic transformation. They recognize peptides derived from cellular proteins displayed at the plasma membrane by major histocompatibility complex (MHC) class I molecules. Peptides are mostly by-products of cytosolic proteolytic enzymes. Peptidic ligands of MHC class I molecules are also generated in the secretory and vesicular pathways. Features of protein substrates, of proteases and of available MHC class I molecules for loading peptides in these compartments shape a singular collection of ligands that also contain different, longer, and lower affinity peptides than ligands produced in the cytosol. Especially in individuals who lack the transporters associated with antigen processing, TAP, and in infected and tumor cells where TAP is blocked, which thus have no supply of peptides derived from the cytosol, MHC class I ligands generated in the secretory and vesicular pathways contribute to shaping the CD8+ T lymphocyte response.  相似文献   

18.
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.  相似文献   

19.
Summary In the absence of divalent cations, ionophore A23187 supports low rates of monovalent cations loss (Na+>K+) from unilamellar liposomes containing the sulfate salts. Monovalent cation efflux is optimal when a pH gradient (interior alkaline) is applied. The maximum observed rate of 0.56 ngion K+·min–1·nmole–1 A23187 is insufficient to account for the rates of K+ efflux induced by the ionophore in mitochondria (150 ngion K+·min–1·nmole–1 A23187). These studies therefore support the concept that A23187 induces loss of K+ from mitochondria by removal of regulating divalent cations from an endogenous K+/H+ exchanger.These studies were supported in part by United States Public Health Services Grant HL09364.  相似文献   

20.
To clarify the role of poly(ADP-ribose)polymerase-1 (PARP-1) in myocardial ischemia-reperfusion injury, we explored some effects of PJ34, a highly specific inhibitor of this enzyme, in hypoxic-reoxygenated (HR) H9c2 cardiomyoblasts. Compared to the control, HR cells showed signs of oxidative stress, marked PARP-1 activation, NAD+ and ATP depletion and impaired mitochondrial activity. HR cardiomyoblasts were affected by both necrosis and apoptosis, the latter involving the nuclear translocation of apoptosis-inducing factor. In HR cardiomyoblasts treated with PJ34, oxidative stress and PARP-1 activity were decreased, and NAD+ and ATP depletion, as well as mitochondrial impairment, were attenuated. Above all, PJ34 treatment improved the survival of HR cells; not only was necrosis significantly diminished, but apoptosis was also reduced and shifted from a caspase-independent to a caspase-dependent pathway. These results suggest that PARP-1 modulation by a selective inhibitor such as PJ34 may represent a promising approach to limit myocardial damage due to post-ischemic reperfusion. Received 27 July 2006; accepted 26 October 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号