首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Activation of δ-opioid receptors (DOR) attenuates anoxic K+ leakage and protects cortical neurons from anoxic insults by inhibiting Na+ influx. It is unknown, however, which pathway(s) that mediates the Na+ influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na+ influxes mediated by voltage-gated Na+ channels; (2) DOR activation inhibited Na+ influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K+ derangement; and (3) DOR activation had little effect on Na+/Ca2+ exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K+ derangement by restricting Na+ influx mediated by Na+ channels and NMDA receptors, and that non-NMDA receptors and Na+/Ca2+ exchangers, although involved in anoxic K+ derangement in certain degrees, are less likely the targets of DOR signal. Received 26 November 2008; received after revision 26 December 2008; accepted 13 January 2009  相似文献   

2.
Glycolysis is an evolutionary conserved metabolic pathway that provides small amounts of energy in the form of ATP when compared to other pathways such as oxidative phosphorylation or fatty acid oxidation. The ATP levels inside metabolically active cells are not constant and the local ATP level will depend on the site of production as well as the respective rates of ATP production, diffusion and consumption. Membrane ion transporters (pumps, exchangers and channels) are located at sites distal to the major sources of ATP formation (the mitochondria). We review evidence that the glycolytic complex is associated with membranes; both at the plasmalemma and with membranes of the endo/sarcoplasmic reticular network. We examine the evidence for the concept that many of the ion transporters are regulated preferentially by the glycolytic process. These include the Na+/K+-ATPase, the H+-ATPase, various types of Ca2+-ATPases, the Na+/H+ exchanger, the ATP-sensitive K+ channel, cation channels, Na+ channels, Ca2+ channels and other channels involved in intracellular Ca2+ homeostasis. Regulation of these pumps, exchangers and ion channels by the glycolytic process has important consequences in a variety of physiological and pathophysiological processes, and a better understanding of this mode of regulation may have important consequences for developing future strategies in combating disease and developing novel therapeutic approaches. Received 20 July 2007; received after revision 30 July 2007; accepted 17 August 2007  相似文献   

3.
Hypoxic/ischemic disruption of ionic homeostasis is a critical trigger of neuronal injury/death in the brain. There is, however, no promising strategy against such pathophysiologic change to protect the brain from hypoxic/ischemic injury. Here, we present a novel finding that activation of δ-opioid receptors (DOR) reduced anoxic Na+ influx in the mouse cortex, which was completely blocked by DOR antagonism with naltrindole. Furthermore, we co-expressed DOR and Na+ channels in Xenopus oocytes and showed that DOR expression and activation indeed play an inhibitory role in Na+ channel regulation by decreasing the amplitude of sodium currents and increasing activation threshold of Na+ channels. Our results suggest that DOR protects from anoxic disruption of Na+ homeostasis via Na+ channel regulation. These data may potentially have significant impacts on understanding the intrinsic mechanism of neuronal responses to stress and provide clues for better solutions of hypoxic/ischemic encephalopathy, and for the exploration of acupuncture mechanism since acupuncture activates opioid system.  相似文献   

4.
The lack of Na+,K+-ATPase expression in intercalated cells (IC) is an intriguing condition due to its fundamental role in cellular homeostasis. In order to better understand this question we compared the activities of Na+,K+-ATPase and Na+-ATPase in two MDCK cell clones: the C11, with IC characteristics, and the C7, with principal cells (PC) characteristics. The Na+,K+-ATPase activity found in C11 cells is far lower than in C7 cells and the expression of its β-subunit is similar in both cells. On the other hand, a subset of C11 without α-subunit expression has been found. In C11 cells the Na+-ATPase activity is higher than that of the Na+,K+-ATPase, and it is increased by medium alkalinization, suggesting that it could account for the cellular Na+-homeostasis. Although further studies are necessary for a better understanding of these findings, the presence of Na+-ATPase may explain the adequate survival of cells that lack Na+,K+-ATPase. Received 09 July 2008; received after revision 03 August 2008; accepted 12 August 2008  相似文献   

5.
Among the scorpion venom components whose function are poorly known or even show contrasting pharmacological results are those called “orphan peptides”. The most widely distributed are named β-KTx or scorpine-like peptides. They contain three disulfide bridges with two recognizable domains: a freely moving N-terminal amino acid sequence and a tightly folded C-terminal region with a cysteine-stabilized α/β (CS-αβ) motif. Four such peptides and three cloned genes are reported here. They were assayed for their cytolytic, antimicrobial and K + channel-blocking activities. Two main characteristics were found: the existence of an unusual structural and functional diversity, whereby the full-length peptide can lyse cells or kill microorganisms, and a C-terminal domain containing the CS-αβ motif that can block K + channels. Furthermore, sequence analyses and phylogenetic reconstructions are used to discuss the evolution of this type of peptide and to highlight the versatility of the CS-αβ structures. Received 13 August 2007; received after revision 30 October 2007; accepted 2 November 2007  相似文献   

6.
In the present study, we have examined the intestinal Na+ transport, through the Na+-H+ exchanger, in ileal brush-border membrane vesicles (BBMV) isolated from spontaneously hypertensive rats (SHR), and normotensive Wistar Kyoto (WKY) rats as a control group. Na+ uptake into ileal BBMV was stimulated in the presence of a proton gradient (pH 5.5 inside/pH 7.5 outside) in SHR and WKY rats, resulting in a transient accumulation (overshoot) in both groups of rats. No overshoot was observed in the absence of a pH gradient. The magnitude of the accumulation was significantly higher in SHR than in WKY rats. Uptake of Na+ at equilibrium was identical in the presence and the absence of a proton gradient and was not changed in SHR. The use of amiloride inhibited pH gradient-driven Na+ uptake in a dose-dependent manner with a Ki of 90 μM and 100 μM for SHR and WKY rats, respectively. The relationship between proton gradient-driven Na+ uptake and external Na+ concentration was saturable and conformed to Michaelis-Menten kinetics in both SHR and WKY rats. Lineweaver-Burk analysis of the pH gradient-driven Na+ uptake indicated values of Vmax that were significantly increased in SHR compared to WKY rats (11.4±0.55 nmol/mg/8 s vs. 4.96±0.78 nmol/mg/8 s for SHR and WKY rats, respectively). In contrast, similar Km values for Na+ were found between SHR and WKY rats (4.0±0.2 mM vs. 4.9±0.6 mM for SHR and WKY rats, respectively). These studies show derangement in ileal BBMV Na+ transport of SHR, which is characterized by increased Na+-H+ exchanger activity. Received 18 December 1996; received after revision 3 February 1997; accepted 7 February 1997  相似文献   

7.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   

8.
Evidence has accumulated recently about the importance of alterations in Na+ channel function and slow myocardial conduction for arrhythmias in the infarcted and failing heart. The present study tested a hypothesis that Na+ current (INa/C) density decreases in chronic heart failure (HF) and that Na+ channel (NaCh) functional density can be restored by long-term therapy with carvedilol, a mixed α- and β-adrenergic blocker. Studies were performed using a canine model of chronic HF produced in dogs by sequential intracoronary embolizations with microspheres. HF developed approximately 3 months after the last embolization (left ventricle, LV, ejection fraction = 28 ± 1 %). Ventricular cardiomyocytes (VCs) were isolated enzymatically from LV mid-myocardium, and INa was measured by whole-cell patch-clamp. The maximum INA/C was decreased in failing (n = 19) compared to normal (n = 12) hearts (33.1 ± 1.6 vs 48.5 ± 5.1 pA/pF, mean ± SE, p < 0.001). The steady-state inactivation and activation of INa remained unchanged in failing compared to normal hearts. Long-term treatment with carvedilol (1 mg/kg, twice daily for 3 months) normalized INa/C in dogs with HF. INa/C in HF dogs (n = 6) treated with carvedilol was higher compared to that of non-treated HF dogs (n = 6) (49.4 ± 0.9 vs 29 ± 4.8 pA/pF, p < 0.007). In vitro culture of VCs of failing hearts for 24 h did not restore INa/C. However, INa/C was partially restored when VCs were incubated for 24 h with BAPTA-AM, an intracellular Ca2+ buffer. Thus, we conclude that experimental chronic HF in dogs results in down-regulation of the functional density of NaCh that can be restored by long-term therapy with carvedilol. The mechanism of NaCh down-regulation in HF may be linked to poor Ca2+ handling in this stage of disease. Received 4 June 2002; received after revision 1 July 2002; accepted 17 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

9.
Voltage-gated K+ (Kv) channels exhibit slow or C-type inactivation during continuous depolarization. A selective pharmacological agent targeting C-type inactivation is hitherto lacking. Here, we report that 6β-acetoxy-7α-hydroxyroyleanone (AHR), a diterpenoid compound isolated from Taiwania cryptomerioides, can selectively modify C-type inactivation of Kv1.2 channels. Extracellular, but not intracellular, AHR (50 μM) dramatically accelerated the slow decay of Kv currents and left-shifted the steady-state inactivation curve. AHR blocked Kv currents with an IC50 of 17.7 μM. AHR did not affect the kinetics and voltage-dependence of Kv1.2 channel activation. Channel block by AHR was independent of intracellular K+ concentration. In addition, effect of AHR was much attenuated in a Kv1.2 V370G mutant defective in C-type inactivation. Therefore, block of Kv1.2 channels by AHR did not appear to involve direct occlusion of the outer pore but depended on C-type inactivation. AHR could thus be a probe targeting Kv channel C-type inactivation gate.  相似文献   

10.
Bacterial Trk and Ktr, fungal Trk and plant HKT form a family of membrane transporters permeable to K+ and/or Na+ and characterized by a common structure probably derived from an ancestral K+ channel subunit. This transporter family, specific of non-animal cells, displays a large diversity in terms of ionic permeability, affinity and energetic coupling (H+–K+ or Na+–K+ symport, K+ or Na+ uniport), which might reflect a high need for adaptation in organisms living in fluctuating or dilute environments. Trk/Ktr/HKT transporters are involved in diverse functions, from K+ or Na+ uptake to membrane potential control, adaptation to osmotic or salt stress, or Na+ recirculation from shoots to roots in plants. Structural analyses of bacterial Ktr point to multimeric structures physically interacting with regulatory subunits. Elucidation of Trk/Ktr/HKT protein structures along with characterization of mutated transporters could highlight functional and evolutionary relationships between ion channels and transporters displaying channel-like features.  相似文献   

11.
Summary Na+, K+-ATPase inhibitors extracted from plasma of healthy human subjects displaced3H-ouabain binding to human erythrocytes and inhibited the Na+ efflux catalyzed by the Na+, K+-pump and unexpectedly the Na+, K+-cotransport system without alteration of the Na+, Na+-exchange or the Na+ passive permeability. This suggests the presence in healthy human plasma of endogenous factors with ouabain-like and furosemide-like activities.Acknowledgments. We are indebted to Dr M. A. Devynck for her advice on chemical measurements and to Dr R. P. Garay for his help with flux measurements  相似文献   

12.
Several clinical trials are currently assessing the therapeutic activity of human TCRVγ9Vδ2+ lymphocytes in cancer. Growing tumors usually follow a triphasic “Elimination, Equilibrium, Escape” evolution in patients. Thus, at diagnostic, most tumors have already developed some means to escape to immune protection. We review here the conventional immunoescape mechanisms which might also protect against cytolytic TCRVγ9Vδ2+ lymphocytes activated by phosphoantigens. Neutralization of these deleterious processes might prove highly valuable to improve the efficacy of ongoing γδ cell-based cancer immunotherapies.  相似文献   

13.
Sporulation and δ-endotoxin synthesis by Bacillus thuringiensis   总被引:4,自引:0,他引:4  
Bacillus thuringiensis is distinguished from the very closely related Bacillus cereus and Bacillus anthracis by the presence of several plasmid-encoded δ-endotoxin genes. These δ-endotoxins, synthesized as protoxins, are produced in large quantities during sporulation and are packaged into intracellular inclusions. Ingestion of the inclusions by insect larvae leads to protoxin solubilization and conversion to toxins each specific for one of several orders of insects. The toxins form cation-selective channels in the membrane of cells lining the larval midgut with subsequent lethality. In most cases, δ-endotoxin synthesis and sporulation are closely coupled. The latter process in B. thuringiensis is probably virtually identical to that in Bacillus subtilis with the additional use of mother cell sporulation forms of RNA polymerase for the synthesis of the δ-endotoxins. There are other more subtle plasmid-encoded functions or plasmid interactions related to regulating protoxin synthesis. Consideration of both plasmid and chromosomal genes is thus critical for defining this organism.  相似文献   

14.
Selective pharmacological Na+/H+ exchange (NHE) inhibitors were used to identify functional NHE isoforms in human small intestinal enterocytes (Caco-2) and to distinguish between direct and indirect effects on transport via the intestinal di/tripeptide transporter hPepT1. The relative potencies of these inhibitors to inhibit 22Na+ influx identifies NHE3 and NHE1 as the apical and basolateral NHE isoforms. The Na+-dependent (NHE3-sensitive) component of apical dipeptide ([14C] Gly-Sar) uptake was inhibited by the selective NHE inhibitors with the same order of potency observed for inhibition of apical 22Na+ uptake. However, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) also reduced [14C]Gly-Sar uptake in the absence of Na+ and this inhibition was concentration and pH (maximal at pH 5.5) dependent. NHE3 inhibition by S1611 and S3226 modulates dipeptide uptake indirectly by reducing the transapical driving force (H+ electrochemical gradient). EIPA (at 100 μM) has similar effects, but at higher concentrations (>200 μM) also has direct inhibitory effects on hPepT1.Received 28 February 2005; received after revision 20 April 2005; accepted 20 May 2005  相似文献   

15.
Summary Exogenous cyclic AMP (cAMP) inhibits the Na+, K+-cotransport system and stimulates the Na+, K+-pump and Na+, Ca2+ exchange in mouse macrophages. These effects are enhanced by inhibition of phosphodiesterase with methylisobutylxanthine (MIX). MIX alone showed little or no effect. A similar response was observed after stimulation of endogenous production of cAMP by isoproterenol.  相似文献   

16.
The ability of three isoforms of protein kinase CK1 (α, γ1, and δ) to phosphorylate the N-terminal region of p53 has been assessed using either recombinant p53 or a synthetic peptide reproducing its 1–28 sequence. Both substrates are readily phosphoylated by CK1δ and CK1α, but not by the γ isoform. Affinity of full size p53 for CK1 is 3 orders of magnitude higher than that of its N-terminal peptide (K m 0.82 μM vs 1.51 mM). The preferred target is S20, whose phosphorylation critically relies on E17, while S6 is unaffected despite displaying the same consensus (E-x-x-S). Our data support the concept that non-primed phosphorylation of p53 by CK1 is an isoform-specific reaction preferentially affecting S20 by a mechanism which is grounded both on a local consensus and on a remote docking site mapped to the K221RQK224 loop according to modeling and mutational analysis.  相似文献   

17.
Our understanding of flippase-mediated lipid translocation and membrane vesiculation, and the involvement of P-type ATPases in these processes is just beginning to emerge. The results obtained so far demonstrate significant complexity within this field and point to major tasks for future research. Most importantly, biochemical characterization of P4-ATPases is required in order to clarify whether these transporters indeed are capable of catalyzing transmembrane phospholipid flipping. The β-subunit of P4-ATPases shows unexpected similarities between the β- and γ-subunits of the Na+/K+-ATPase. It is likely that these proteins provide a similar solution to similar problems, and might have adopted similar structures to accomplish these tasks. No P4-ATPases have been identified in the endoplasmic reticulum and it remains an intriguing possibility that, in this compartment, P5A-ATPases are functional homologues of P4-ATPases. Received 19 June 2008; received after revision 31 July 2008; accepted 15 August 2008  相似文献   

18.
A large variety of snake toxins evolved from PLA2 digestive enzymes through a process of ‘accelerated evolution’. These toxins have different tissue targets, membrane receptors and mechanisms of alteration of the cell plasma membrane. Two of the most commonly induced effects by venom PLA2s are neurotoxicity and myotoxicity. Here, we will discuss how these snake toxins achieve a similar cellular lesion, which is evolutionarily highly conserved, despite the differences listed above. They cause an initial plasma membrane perturbation which promotes a large increase of the cytosolic Ca2+ concentration leading to cell degeneration, following modes that we discuss in detail for muscle cells and for the neuromuscular junction. The different systemic pathophysiological consequences caused by these toxins are not due to different mechanisms of cell toxicity, but to the intrinsic anatomical and physiological properties of the targeted tissues and cells. Received 05 March 2008; received after revision 08 April 2008; accepted 29 April 2008  相似文献   

19.
The mechanisms of HCO 3 and Cl transport across basolateral membranes from rat ileum were investigated in isolated vesicles by means of uptake experiments. Neither Cl/HCO 3 exchanger nor Na+–(HCO 3 )n cotransport seem to be present in ileal basolateral membranes. Moreover Cl uptake is unaffected bycis Na+ and/or K+ gradients, indicating the absence of Na+–Cl, K+–Cl and Na+–K+–2Cl symport activity. An electrically conductive pathway seems to be responsible for both HCO 3 and Cl fluxes. Evidence is also given for the presence of a Na+/H+ exchanger at the basolateral pole of ileal enterocytes.  相似文献   

20.
Summary Na+, K+-adenosinetriphosphatase (Na+, K+-ATPase) activity was decreased in liver plasma membranes from rats in which cholestasis had been induced by i.v. administration of sodium taurolithocholate (5 moles/100 g b. wt). Incubation of liver plasma membranes with taurolithocholate (10–1300 M) caused significant and dose dependent reductions of Na+, K+-ATPase activity at taurolithocholate concentrations above 100 M. These findings lend support to the hypothesis that cholestasis induced by monohydroxy bile acids is at least partially the result of an inhibition of hepatic Na+, K+-ATPase activity.This work was supported by the Swiss National Science Foundation.The authors thank Mr H. Sägesser and Miss B. Schütz for technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号