首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression.  相似文献   

2.
Upon the aberrant activation of oncogenes, normal cells can enter the cellular senescence program, a state of stable cell-cycle arrest, which represents an important barrier against tumour development in vivo. Senescent cells communicate with their environment by secreting various cytokines and growth factors, and it was reported that this 'secretory phenotype' can have pro- as well as anti-tumorigenic effects. Here we show that oncogene-induced senescence occurs in otherwise normal murine hepatocytes in vivo. Pre-malignant senescent hepatocytes secrete chemo- and cytokines and are subject to immune-mediated clearance (designated as 'senescence surveillance'), which depends on an intact CD4(+) T-cell-mediated adaptive immune response. Impaired immune surveillance of pre-malignant senescent hepatocytes results in the development of murine hepatocellular carcinomas (HCCs), thus showing that senescence surveillance is important for tumour suppression in vivo. In accordance with these observations, ras-specific Th1 lymphocytes could be detected in mice, in which oncogene-induced senescence had been triggered by hepatic expression of Nras(G12V). We also found that CD4(+) T cells require monocytes/macrophages to execute the clearance of senescent hepatocytes. Our study indicates that senescence surveillance represents an important extrinsic component of the senescence anti-tumour barrier, and illustrates how the cellular senescence program is involved in tumour immune surveillance by mounting specific immune responses against antigens expressed in pre-malignant senescent cells.  相似文献   

3.
4.
Non-coding RNAs (ncRNAs) are involved in an increasingly recognized number of cellular events. Some ncRNAs are processed by DICER and DROSHA RNases to give rise to small double-stranded RNAs involved in RNA interference (RNAi). The DNA-damage response (DDR) is a signalling pathway that originates from a DNA lesion and arrests cell proliferation3. So far, DICER and DROSHA RNA products have not been reported to control DDR activation. Here we show, in human, mouse and zebrafish, that DICER and DROSHA, but not downstream elements of the RNAi pathway, are necessary to activate the DDR upon exogenous DNA damage and oncogene-induced genotoxic stress, as studied by DDR foci formation and by checkpoint assays. DDR foci are sensitive to RNase A treatment, and DICER- and DROSHA-dependent RNA products are required to restore DDR foci in RNase-A-treated cells. Through RNA deep sequencing and the study of DDR activation at a single inducible DNA double-strand break, we demonstrate that DDR foci formation requires site-specific DICER- and DROSHA-dependent small RNAs, named DDRNAs, which act in a MRE11–RAD50–NBS1-complex-dependent manner (MRE11 also known as MRE11A; NBS1 also known as NBN). DDRNAs, either chemically synthesized or in vitro generated by DICER cleavage, are sufficient to restore the DDR in RNase-A-treated cells, also in the absence of other cellular RNAs. Our results describe an unanticipated direct role of a novel class of ncRNAs in the control of DDR activation at sites of DNA damage.  相似文献   

5.
Mouse p53 inhibits SV40 origin-dependent DNA replication   总被引:52,自引:0,他引:52  
p53 is a cellular phosphoprotein that is present at elevated concentrations in cells transformed by different agents. p53 complementary DNA expression-constructs immortalize primary cells in vitro and co-operate with an activated ras oncogene in malignant transformation. Several reports have implicated p53 in mammalian cell cycle control and specifically with events occurring at the G0-G1 boundary. p53 forms specific complexes with simian virus 40 (SV40) large-T antigen, and such complexes are found associated with both replicating and mature SV40 DNA in lytically infected cells. In an accompanying paper Gannon and Lane report that in in vitro plate-binding assays, mouse p53 can displace polymerase alpha from complex with T-antigen. We have examined the in vivo consequences of expressing wild-type and mutant p53 proteins from other species in SV40-transformed monkey cells. We report here that expression of mouse p53 results in a substantial and selective inhibition of SV40 origin-dependent DNA replication. In addition to any function in the G0-G1 transition, the data presented suggest that p53 may affect directly the initiation or maintenance of replicative DNA synthesis.  相似文献   

6.
A DNA damage checkpoint response in telomere-initiated senescence   总被引:1,自引:0,他引:1  
Most human somatic cells can undergo only a limited number of population doublings in vitro. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres--the ends of linear chromosomes-cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks. These markers include nuclear foci of phosphorylated histone H2AX and their co-localization with DNA repair and DNA damage checkpoint factors such as 53BP1, MDC1 and NBS1. We also show that senescent cells contain activated forms of the DNA damage checkpoint kinases CHK1 and CHK2. Furthermore, by chromatin immunoprecipitation and whole-genome scanning approaches, we show that the chromosome ends of senescent cells directly contribute to the DNA damage response, and that uncapped telomeres directly associate with many, but not all, DNA damage response proteins. Finally, we show that inactivation of DNA damage checkpoint kinases in senescent cells can restore cell-cycle progression into S phase. Thus, we propose that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.  相似文献   

7.
8.
BRAFE600-associated senescence-like cell cycle arrest of human naevi   总被引:3,自引:0,他引:3  
Most normal mammalian cells have a finite lifespan, thought to constitute a protective mechanism against unlimited proliferation. This phenomenon, called senescence, is driven by telomere attrition, which triggers the induction of tumour suppressors including p16(INK4a) (ref. 5). In cultured cells, senescence can be elicited prematurely by oncogenes; however, whether such oncogene-induced senescence represents a physiological process has long been debated. Human naevi (moles) are benign tumours of melanocytes that frequently harbour oncogenic mutations (predominantly V600E, where valine is substituted for glutamic acid) in BRAF, a protein kinase and downstream effector of Ras. Nonetheless, naevi typically remain in a growth-arrested state for decades and only rarely progress into malignancy (melanoma). This raises the question of whether naevi undergo BRAF(V600E)-induced senescence. Here we show that sustained BRAF(V600E) expression in human melanocytes induces cell cycle arrest, which is accompanied by the induction of both p16(INK4a) and senescence-associated acidic beta-galactosidase (SA-beta-Gal) activity, a commonly used senescence marker. Validating these results in vivo, congenital naevi are invariably positive for SA-beta-Gal, demonstrating the presence of this classical senescence-associated marker in a largely growth-arrested, neoplastic human lesion. In growth-arrested melanocytes, both in vitro and in situ, we observed a marked mosaic induction of p16(INK4a), suggesting that factors other than p16(INK4a) contribute to protection against BRAF(V600E)-driven proliferation. Naevi do not appear to suffer from telomere attrition, arguing in favour of an active oncogene-driven senescence process, rather than a loss of replicative potential. Thus, both in vitro and in vivo, BRAF(V600E)-expressing melanocytes display classical hallmarks of senescence, suggesting that oncogene-induced senescence represents a genuine protective physiological process.  相似文献   

9.
Telomeres shorten during ageing of human fibroblasts   总被引:132,自引:0,他引:132  
C B Harley  A B Futcher  C W Greider 《Nature》1990,345(6274):458-460
The terminus of a DNA helix has been called its Achilles' heel. Thus to prevent possible incomplete replication and instability of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation, which may involve de novo synthesis of additional repeats by novel DNA polymerase called telomerase. Such a polymerase has been recently detected in HeLa cells. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.  相似文献   

10.
The v-myc oncogene can induce tumours in haematopoietic, mesenchymal and epithelial tissues. The corresponding c-myc proto-oncogene can contribute to the genesis and/or the progression of an equally wide variety of tumours when activated by retroviral insertions, chromosomal translocations or gene amplification. The c-myc gene product is a DNA-binding, nuclear phosphoprotein that is involved in the control of cell proliferation and possibly in DNA synthesis. The replication of Simian virus 40 (SV40) is a useful model system to study eukaryotic DNA replication as the virus relies almost entirely on cellular DNA replication apparatus. The SV40-based vector, pSVEpR4, replicates poorly in the human BJAB lymphoma line and in most human cells, but replicates well in Burkitt lymphoma lines, which have fused immunoglobulin and c-myc genes, resulting in high c-myc expression. Cotransfection of the BJAB cells with a c-myc-expressing construct (pI4-P6) increased the replication of pSVEpR4 tenfold. Our findings indicate that overexpression of the c-myc gene product allows the replication of SV40 in human lymphoma cells, suggesting that c-myc is involved in the control of replication.  相似文献   

11.
Beall EL  Manak JR  Zhou S  Bell M  Lipsick JS  Botchan MR 《Nature》2002,420(6917):833-837
There is considerable interest in the developmental, temporal and tissue-specific patterns of DNA replication in metazoans. Site-specific DNA replication at the chorion loci in Drosophila follicle cells leads to extensive gene amplification, and the organization of the cis-acting DNA elements that regulate this process may provide a model for how such regulation is achieved. Two elements important for amplification of the third chromosome chorion gene cluster, ACE3 and Ori-beta, are directly bound by Orc (origin recognition complex), and two-dimensional gel analysis has revealed that the primary origin used is Ori-beta (refs 7-9). Here we show that the Drosophila homologue of the Myb (Myeloblastosis) oncoprotein family is tightly associated with four additional proteins, and that the complex binds site-specifically to these regulatory DNA elements. Drosophila Myb is required in trans for gene amplification, showing that a Myb protein is directly involved in DNA replication. A Drosophila Myb binding site, as well as the binding site for another Myb complex member (p120), is necessary in cis for replication of reporter transgenes. Chromatin immunoprecipitation experiments localize both proteins to the chorion loci in vivo. These data provide evidence that specific protein complexes bound to replication enhancer elements work together with the general replication machinery for site-specific origin utilization during replication.  相似文献   

12.
M Mowat  A Cheng  N Kimura  A Bernstein  S Benchimol 《Nature》1985,314(6012):633-636
There is now good evidence that the cellular protein, p53, is involved in the transformation process, although its precise role is unknown. It was reported recently that expression of the p53 gene can immortalize cells and that the p53 gene can replace the myc oncogene in a myc-ras immortalization/transformation assay. We have investigated whether p53 is involved in the progression towards the neoplastic state in vivo and report here that erythroleukaemic cell lines transformed by different isolates of Friend leukaemia virus show altered expression of the cellular p53 gene. High levels of p53 protein are found in certain lines, but the protein is undetectable in others. This heterogeneity in p53 gene expression is associated with heterogeneity in tumorigenicity. We demonstrate that genomic rearrangements are responsible for p53 gene inactivation in these cell lines and that they occur in vivo during the natural progression of Friend virus-induced erythroleukaemia.  相似文献   

13.
14.
Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.  相似文献   

15.
16.
p53 and DNA polymerase alpha compete for binding to SV40 T antigen   总被引:2,自引:0,他引:2  
J V Gannon  D P Lane 《Nature》1987,329(6138):456-458
The large T antigen (T) of simian virus 40 is a multifunctional protein required for both viral DNA replication and cellular transformation. T antigen forms specific protein complexes with the host protein p53 in both virus-infected and transformed cells. p53 has recently been shown to be an oncogene, but its normal function is not clear. We previously established a radioimmunoassay to study the newly described complex between T antigen and DNA polymerase alpha, and have noted a similarity between the antigenic changes induced in T by the binding of both p53 and polymerase. We now extend this analysis to a larger collection of anti-T antibodies and formally establish that p53 and DNA polymerase alpha can compete for binding to the SV40 T antigen. At a critical concentration of the three components it is possible to detect a trimeric complex of T, p53 and DNA polymerase alpha. Our observations have important implications for the control by these nuclear oncogenes of viral and cellular DNA synthesis and viral host range in both normal and transformed cells. We present a model for the action of p53 in growth control.  相似文献   

17.
18.
19.
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.  相似文献   

20.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta.   总被引:28,自引:0,他引:28  
C Masutani  R Kusumoto  A Yamada  N Dohmae  M Yokoi  M Yuasa  M Araki  S Iwai  K Takio  F Hanaoka 《Nature》1999,399(6737):700-704
Xeroderma pigmentosum variant (XP-V) is an inherited disorder which is associated with increased incidence of sunlight-induced skin cancers. Unlike other xeroderma pigmentosum cells (belonging to groups XP-A to XP-G), XP-V cells carry out normal nucleotide-excision repair processes but are defective in their replication of ultraviolet-damaged DNA. It has been suspected for some time that the XPV gene encodes a protein that is involved in trans-lesion DNA synthesis, but the gene product has never been isolated. Using an improved cell-free assay for trans-lesion DNA synthesis, we have recently isolated a DNA polymerase from HeLa cells that continues replication on damaged DNA by bypassing ultraviolet-induced thymine dimers in XP-V cell extracts. Here we show that this polymerase is a human homologue of the yeast Rad30 protein, recently identified as DNA polymerase eta. This polymerase and yeast Rad30 are members of a family of damage-bypass replication proteins which comprises the Escherichia coli proteins UmuC and DinB and the yeast Rev1 protein. We found that all XP-V cells examined carry mutations in their DNA polymerase eta gene. Recombinant human DNA polymerase eta corrects the inability of XP-V cell extracts to carry out DNA replication by bypassing thymine dimers on damaged DNA. Together, these results indicate that DNA polymerase eta could be the XPV gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号