首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
珠江广州段沉积物中多环芳烃分布及富集研究   总被引:3,自引:1,他引:2  
通过对珠江广州河段沉积物进行粒度分级:>500μm,500μm>>220μm,220μm>>63μm,,63μm>>22μm,<22μm.对各个粒级的样品重液分离,收集轻组分(有机质)和重组分(主要为无机矿物及无定型有机质).参照美国EPA8000系列方法分析样品中多环芳烃(PAHs),利用显微镜对沉积物中不同组分进行鉴定,讨论了PAHs在沉积物不同组分中的分布规律.  相似文献   

2.
利用GC-MS对上海市多环芳烃(PAHs)潜在的污染源成分谱特征进行了定量分析。结果表明,工业区路面尘中PAHs含量最高值均分布在土壤63~125μm粒径中,主要以中高环Phe、Fl、Pyr、Chry、B[b+k]F和Ba P为主;建筑工地土壤与路面尘中PAHs分布特征相似,主要以Phe、Fl、Pyr和Chry为主;秸秆在不同燃烧条件下PAHs产生量不同,但PAHs组分特征相同;卡车、客车和小汽车中PAHs含量分别为56μg/g,47.2μg/g,529.1μg/g。小汽车尾气中以高环PAHs为主,卡车和客车以低环为主;油烟中Ba P的平均含量为38 ng/g,单体PAH以Phe、Fl、Nap和Pyr为主。烤肉中PAHs的含量为6.7μg/g。  相似文献   

3.
【目的】研究不同植被覆盖下湿地土壤有机碳组成、微生物群落结构的特征,为合理开发利用、恢复和保护湿地生态功能提供依据。【方法】以江苏洪泽湖与淮河交汇区湿地自然植被类型(湖草滩、芦苇滩)和人工植被类型(杨树林、柳树林)的土壤为研究对象,应用物理分组的方法研究土壤不同粒径 (<2 μm、≥2~63 μm、≥63~200 μm、≥200~2 000 μm) 组分分布、有机碳含量与分布情况,采用高通量测序技术对土壤微生物群落结构特征进行表征,运用聚类分析、冗余分析研究不同植被类型土壤中微生物物种丰度相似性、微生物群落结构与不同粒径组分土壤有机碳及土壤理化性质之间的关系。【结果】①洪泽湖与淮河交汇区湿地人工植被类型林地中土壤粒径≥200~2 000 μm组分分布最少,土壤粒径≥2~63和≥63~200 μm组分分布显著高于其他粒径组分;人工植被类型土壤总有机碳含量显著高于自然植被类型,其中各植被类型各粒径组分(除粒径≥2~63 μm组分)土壤有机碳含量大小顺序均为柳树林>杨树林>湖草滩>芦苇滩;粒径< 2 μm组分的土壤有机碳分布比例显著高于其他粒径组分的,粒径≥200~2 000 μm组分的土壤有机碳分布比例低于其他粒径组分的。②各植被类型土壤微生物群落多样性(Shannon 指数)大小顺序均为芦苇滩>湖草滩>柳树林>杨树林,变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)是样地土壤细菌的主要优势种群(50.21%~66.12%);子囊菌门(Ascomycota)、担子菌门(Basidiomycota)是土壤真菌的主要优势种群(68.32%~95.11%)。土壤细菌群落聚类分析相似性系数最高的是湖草滩和芦苇滩,这个聚类和杨树林的土壤细菌群落相似性较远;真菌群落聚类分析中,湖草滩和芦苇滩的真菌群落自成一族群;杨树林和柳树林的真菌群落聚为另一族群。③微生物群落结构与土壤理化性质相关性分析显示,土壤有机碳含量和含水量是影响土壤微生物群落结构的主要因子,细菌中的酸杆菌门(Acidobacteria)和真菌中的担子菌门(Basidiomycota)受粒径<2 μm、≥2~63 μm、≥63~200 μm组分的土壤有机碳分布影响很大。【结论】洪泽湖湿地4种植被覆盖下不同粒径组分土壤的质量和有机碳含量数值呈现两头小中间大趋势,不同粒径组分中有机碳分布比例随粒径的增加而降低。种植人工植被(柳树林、杨树林)有利于增加土壤有机碳的含量,但人工植被类型未增加土壤微生物的多样性,粒径<200 μm组分的土壤有机碳分布可能影响特定的优势微生物类群。  相似文献   

4.
辽河支流条子河表层水体中多环芳烃的污染特征   总被引:1,自引:0,他引:1  
为了解辽河源头区典型支流——条子河四平段表层水体中多环芳烃(PAHs)的污染特征,分别于丰水期、平水期和枯水期采集条子河10个代表性断面的上覆水水样,测定了样品中16种优控PAHs的质量浓度、分析了其时空分布和来源,并对其生态风险进行了评价。结果表明:条子河表层水体中总PAHs的质量浓度(∑PAHs)范围为319.8~3 715.9 ng/L,平均值为1 476.0 ng/L,PAHs的组成以2~3环为主,占∑PAHs总量的53.1%~81.0%,5~6环的PAHs均未检测出。不同水期间,∑PAHs均值的大小顺序为:枯水期(2 035.0 ng/L)平水期(1 272.5 ng/L)丰水期(967.9 ng/L)。空间分布上,∑PAHs的检测最高值(3 715.9 ng/L)和平均浓度最大值(3 194.8 ng/L)均出现在位于四平市城区出境断面(汇合口)处。PAHs主要来源是石油、草木、煤炭的混合燃烧。条子河表层水体中苯并[a]芘的当量为5.1~36.1 ng/L,高于国家地表水环境质量标准值,条子河表层水体中PAHs存在一定的生态风险。  相似文献   

5.
选用11个不同Wx蛋白亚基型小麦品种,研究小麦淀粉粒数目、体积和表面积分布特征及其与直链淀粉含量之间的关系。结果表明,小麦胚乳淀粉粒的粒径范围为0.4~48μm,且最大粒径存在品种间差异。小麦淀粉粒数目分布呈单峰曲线变化,峰值粒径小于1μm;B型淀粉粒(粒径10μm)占淀粉粒数量的99%以上,A型淀粉粒(粒径≥10μm)占淀粉粒数量不足1%。小麦淀粉粒体积分布呈双峰曲线变化,峰值粒径分别位于4.0~5.9μm和21.7~23.8μm,峰谷位于10μm;A型淀粉粒占淀粉体积的40.4%~61.3%,B型淀粉粒占38.7%~59.6%。小麦淀粉粒表面积分布呈双峰或3峰曲线变化,双峰曲线的峰值粒径分别处于2.1~2.8μm和19.8~21.7μm,3峰曲线的峰值粒径分别为1.2,4.9,9.8μm;B型淀粉粒的表面积(占82.0%~90.3%)显著高于A型淀粉粒(占9.7%~18.0%)。3峰曲线中的B型淀粉粒的表面积又可分为B1型(峰值粒径为1.2μm)占表面积的46.9%~47.8%;B2型(峰值粒径为4.9μm)占表面积的38.2%~39.5%。Waxy蛋白亚基的完全缺失对小麦淀粉粒的分布特征影响较大。表现为糯小麦的数量峰值粒径变大,1~10μm淀粉粒数量增加,1μm淀粉粒数量减少,B型淀粉粒体积和表面积增加,A型淀粉粒的体积和表面积降低。Waxy蛋白亚基的部分缺失对小麦淀粉粒的分布也存在一定影响。相关性分析表明,直链淀粉含量与B型淀粉粒的体积、表面积百分数和1~10μm淀粉粒数量百分数呈显著负相关,与A型淀粉粒的体积、表面积百分数和1μm淀粉粒数量百分数呈显著正相关。直链淀粉含量与A型淀粉粒的数量百分数相关不显著。  相似文献   

6.
结合水厂实际水处理工艺及活性炭深度处理装置,试验研究砂滤池和活性炭滤柱出水中颗粒物数量变化及粒径分布规律.试验结果表明,过滤周期内砂滤池出水中颗粒物总数平均为148个/mL,其中粒径大于2μm颗粒物的数量平均为27个/mL,其粒径主要分布在2~15μm之间.砂滤池初滤水中粒径大于2μm颗粒物含量较高,前10 min内其数量高于50个/mL.砂滤池出水的浊度变化滞后于颗粒物数量变化,且二者之间的相关性差(R2<0.1).与砂滤池出水(164个/mL)相比,活性炭滤柱出水中颗粒物数量水平(561个/mL)显著提高,其中粒径大于2μm颗粒物数量达153个/mL,出水中粒径在2μm和2~7μm之间的颗粒物数量增多最为明显.  相似文献   

7.
西江水体中多环芳烃的分布特征   总被引:1,自引:0,他引:1  
采用玻璃纤维滤膜过滤分离西江水柱样品,并根据气相色谱一质谱联用(GC-MS)对多环芳烃(PAHs)进行定量分析.结果表明,溶解相和颗粒相中多环芳烃的浓度分别为21.7~138 ng·L-1和40.9~238μg·kg-1.水体中多环芳烃的总含量(颗粒相及溶解相),洪水期(43.9~116.9ng·L-1)大于枯水期(25.2~34.1 ng·L-1).从PAHs组成特点来看,溶解相以3环的PAHs为主,占总组分的80%;而颗粒相以3环、4环的PAHs为主,分别占总组分的48%和41%.西江水体多环芳烃的总含量,高于欧洲一些低污染水域,但低于国内一些主要河流.  相似文献   

8.
为了控制柴油机颗粒物排放,将燃油添加剂(FBC)按Fe元素质量分数分别为200、400、600 mg·kg-1掺混于柴油中制备出Fe-FBC燃油,分别标记为Fe200、Fe400和Fe600.采用傅里叶红外分析仪(FTIR)、发动机粒径谱仪(EEPS)和气相色谱质谱联用仪(GC-MS),研究了Fe-FBC燃油对共轨柴油机醛类排放、颗粒的粒径分布以及可溶性有机物组分(SOF)的影响.结果表明:Fe-FBC的加入促进了柴油的燃烧,燃用Fe-FBC燃油时的甲醛和乙醛排放均较纯柴油低;颗粒数量浓度和质量浓度分布逐渐向小粒径方向偏移;随着Fe-FBC中Fe元素质量分数的升高,峰值数量浓度逐渐增加,峰值质量浓度则逐渐降低;柴油中添加Fe-FBC后,颗粒SOF中烯烃、酸类、多环芳香烃类(PAHs)质量分数下降,PAHs由高环数向低环数转换,而脂类质量分数却上升;同时,SOF组分的碳原子数分布整体由高碳原子向低碳原子迁移,SOF组分中高碳原子数目降低,低碳原子数目升高.  相似文献   

9.
为了解辽河典型支流四平市条子河表层沉积物中多环芳烃(PAHs)的污染状况,选取10个采样点采集表层沉积物样品,测定了其中的PAHs质量浓度、分析了其空间分布特征、应用多种方法解析了PAHs的来源并对其生态风险进行了评价。结果表明,条子河表层沉积物中PAHs质量浓度范围为601.3~2 906.2 ng/g,算数平均值为1 527.3 ng/g,所检出的PAHs的环数均为2-4环化合物,且以4环为主,占PAHs的63.6%~71.5%。来源解析表明条子河表层沉积物中的PAHs主要来源于煤和生物质的燃烧。生态风险评价结果显示,3环的苊和芴在各个采样点可能产生一定的负面毒性效应;位于条子河干流、临近四平市城区采样点的沉积物中PAHs对生物可能产生中低毒性;而其他采样点存在综合生态风险的可能性很小。  相似文献   

10.
将金属套管式微通道用于油包水(W/O)乳液的制备,系统考察了连续相中大豆油和正己烷的体积比、表面活性剂质量分数、套管环隙尺寸和微孔孔径等对乳滴粒径的影响。得到的较优制备工艺条件为:大豆油和正己烷体积比8∶10、表面活性剂Span 80的质量分数1%、微孔孔径5μm、套管环隙尺寸250μm,可制备出平均粒径约为13μm且分散性良好的W/O乳液。与高速均质机和Y型微通道的比较发现,其所得乳液分散性和稳定性优于后两者,可望满足实际工业应用需求的高通量(至少可达1L/min)。此外,实验考察了微通道结构参数对乳化压降的影响,结果表明乳化压降随微孔孔径、套管环隙尺寸的减小而增大。  相似文献   

11.
上海大气可吸入颗粒物中多环芳烃(PAHs)的污染特征研究   总被引:31,自引:0,他引:31  
采用气质联用技术(GC/MS)对上海市大气颗粒物中美国EPA优先控制的16种多环芳烃进行定量研究.结果显示,冬季PAHs浓度最高,夏季浓度最低;绝大多数的PAHs存在于0.43~2.1μm的粒径范围内;在粒径分布上,三环、四环、五环的PAHs基本上呈单峰分布,在0.43-1.1μm时达到浓度最高值.  相似文献   

12.
采用批平衡实验,研究阿特拉津在棕壤不同粒径组分上的吸附-解吸行为.结果表明,阿特拉津在不同粒径组分上的Kf值从大到小顺序为:5~10 μm≈2~5 μm≈<2μm>10~50 μm>50~250 μm.其中,当粒径为<2,2~5和5~10 μm,其吸附作用与土壤颗粒的有机质含量和游离氧化铁铝的量无明显相关性,这种现象可能与土壤有机质的组分、结构特征及有机质与矿物结合的方式有关.阿特拉津在不同粒径组分上的解吸作用均存在不同程度的滞后作用,且均为正滞后现象.其中,尤以在5~10μm粒径上的滞后现象最明显.  相似文献   

13.
目的探明随着填埋时间的延长贮存污泥物理化学性质变化规律.方法通过对沈阳市某污泥堆放场地不同填埋时间的4#、6#、10#三个污泥储坑采样分析,检测污泥含水率、pH值、有机质质量分数、TN、TP和重金属形态及质量分数等指标,并与于沈阳市北部污水处理厂新鲜污泥性质对比.结果试验结果表明4#、6#和10#贮存污泥的含水率为分别为76.01%、75.06%和82.17%;pH值分别为7.89、8.79和8.72;有机质质量分数分别为37.8%、36.4%和42.0%;TN、TP质量分数在1.57%~2.23%和2.28%~3.96%.重金属中Cu质量分数达0.81‰,超过《城镇污水处理厂污泥处置农用泥质》(CJ/T 309—2009)标准中A级污泥最高含量限值.结论随着填埋时间延长,有机质含量降低;重金属残渣态百分含量增多,可交换态百分含量减少.  相似文献   

14.
为探究郑州市大气细颗粒物PM_(2.5)中多环芳烃(PAHs)的污染特征,在2017年10月—2018年7月期间,选取典型月份采集四季PM_(2.5)样品进行分析。郑州市PM_(2.5)和PAHs的年均质量浓度分别为(93.0±54.6)μg/m~3和(26.3±21.0) ng/m~3,呈现冬季高、夏季低的季节变化趋势;冬季4环PAHs的占比高达41%,春、夏、秋3个季节的环数分布以5和6环比例最大;苯并[a]芘(BaP)和BaP毒性当量的年均质量浓度分别为2.3 ng/m~3和4.0 ng/m~3,四季的质量浓度均在较高水平。增量终生致癌风险评估结果表明,PAHs致癌风险值在0.13×10~(-6)~1.45×10~(-6)范围内,部分时间高于美国环境保护署规定的可接受风险水平,存在一定的健康风险。  相似文献   

15.
考察第二松花江表层沉积物中16种多环芳烃类化合物(PAHs)的质量比.结果表明:16种PAHs的总质量比为350.0~3 877.4ng/g,平均质量比为1 322.6ng/g,4~6环相对丰度为58.5%,2~3环相对丰度为41.5%;PAHs在上游水区的质量比最高,与长江河口相近;除河源区外,大部分水域沉积物中PAHs人为来源为化石燃料的燃烧,少部分为石油源;除表层沉积物中芴和苊烯可能具有一定的暴露风险外,其他PAHs存在的暴露风险较小,即第二松花江沉积物PAHs总量远低于风险评估低值(ERL),存在的暴露风险较小.  相似文献   

16.
以一辆国Ⅴ柴油公交车为研究对象,在重型底盘测功机上运行中国典型城市公交循环,试验研究了柴油(D100),废食用油制生物柴油-柴油体积混合比例分别为5%、10%和20%的B5、B10、B20燃油的颗粒物可溶有机物(Soluble Organic Fraction, SOF)和多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)排放特性.结果表明:国Ⅴ公交车排放的SOF组分主要集中于粒径0.1~0.5μm的细颗粒,脂肪酸以碳原子数8~18的偶数碳脂肪酸为主,烷烃组分的碳原子数为16~36,随碳原子数的增加呈双峰分布,PAHs以3环和4环PAHs为主;与柴油比较,国Ⅴ公交车燃用生物柴油的颗粒物质量、脂肪酸、烷烃、PAHs排放因子降低,颗粒物中SOF比例增大,3环PAHs减少,PAHs等效毒性与柴油基本相当.  相似文献   

17.
以循环流化床锅炉飞灰为研究对象,分析了飞灰的粒径和含碳量分布,并利用扫描电子显微镜观察了不同粒径飞灰的微观形貌。结果表明,循环流化床锅炉飞灰中碳的质量分数最高的区域分布在38~58μm、90~120μm和大于150μm的粒径段,具有峰值特征;且循环流化床锅炉焦炭颗粒的燃尽与燃烧室温度、颗粒的孔隙结构及旋风分离器的性能关系密切。  相似文献   

18.
采用高效液相色谱法测定贵阳市道路地表灰尘中PAHs的含量,并对其分布特征及来源进行解析.结果表明,贵阳市道路地表灰尘中PAHs主要为化石燃料的燃烧所致,高环PAHs含量较高.工业区和重要交通干道的ΣPAHs含量最高,公园最低,在不同粒径道路地表灰尘中∑PAHs在630.3~1 870.1μg/kg之间,∑PAHs均值为1 154.5μg/kg,∑PAHs浓度最大值及质量负荷率的最大值出现在粒径范围0.074~0.150mm灰尘样品中.  相似文献   

19.
竖流式沉淀池内的流动特性和泥水分布规律是结构、工艺设计的关键,然而其内部的流场难以通过常规的实验手段获得,且物理模型花费较大.因此建立了竖流式沉淀池内泥水分离的混合物模型,应用计算机流体动力学(computational fluid dynamics,CFD)软件对其流场和浓度场进行三维数值模拟.竖流式沉淀池内存在流动漩涡,造成靠近进水管外侧和沉降筒体内侧的流速相对较高.在高度z=2m处的沉降筒体中部流场较好,是泥水重要的沉降分离区域.随着入口流速的增大,沉淀池内受到的扰动增大,导致处理效果变差,当流速从0.01 m/s增加到0.03 m/s的过程中,水出口的污泥去除率从96.35%下降到89.17%.大粒径的污泥颗粒在泥斗中产生了更好的沉积效果,当污泥粒径从50μm增加到200μm的过程中,污泥去除率从31.93%升高到99.92%.由此可知,采用数值模拟方法能够很好的计算得到不同工艺参数下沉淀池内的泥水分布情况和流场规律,从而为工程设计提供参数依据.  相似文献   

20.
以位山引黄灌区为研究区,测定了农田土壤剖面的磁化率和粒度,并分析了二者的相关关系.结果显示:位山引黄灌区农田土壤低频磁化率(xlf)的变化范围为35.37-97.20×10~(-8)m~3/kg,均值为62.16×10~(-8) m~3/kg;频率磁化率(xfd)的变化范围为0.65%-22.14%,平均值为7.23%.土壤中粘粒(4μm)含量变化范围为3.20%-27.16%,平均值为9.07%;粉砂(4-63μm)含量变化范围为35.82%-90.23%,平均值为68.94%;砂粒(63μm)含量变化范围为1.95%-58.52%,平均值为21.99%;中值粒径的变化范围为9.56-72.86μm,平均值为34.94μm.相关性分析结果表明:剖面0-20cm土壤xlf与粉砂(4-63μm)含量呈显著负相关,与砂粒(63μm)含量及中值粒径呈显著正相关,与粘粒(4μm)含量相关性较弱,土壤xfd与各粒度组分含量及中值粒径的相关性均不显著.剖面20-80cm土壤xlf与粉砂(4-63μm)含量呈显著负相关,与砂粒(63μm)含量呈显著正相关,与中值粒径的相关性较显著,与粘粒(4μm)含量相关性不显著;土壤xfd与粘粒(4μm)及粉砂(4-63μm)含量相关性较显著,与砂粒(63μm)含量及中值粒径的相关性均不显著.研究认为:土壤磁化率在0-20cm耕作层主要受到土壤母质以及灌溉、施肥等人类活动的影响,而在20-80cm主要受土壤母质差异的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号