共查询到20条相似文献,搜索用时 78 毫秒
1.
储层流动单元指数(FZI)能够从岩石物理相的角度体现出孔渗关系,可作为孔渗关系分析的辅助性参数。为了在孔隙度、渗透率未知的情况下对逐个采样点求取FZI,本文在分析泌阳凹陷白云岩分布区关键井的岩心数据和多种测井资料的基础上,建立了一种基于椭圆基函数(Ellipse Basis Function)的模糊神经网络FZI预测模型,该预测系统可根据学习样本自行创建或删减模糊规则。测井资料信息量庞大,因此这种具有自学习机制的预测系统更有利于有效信息的提取和利用,特别对于复杂储层而言,减轻了预测过程中对先验信息的依赖程度,因而效率和精度更高。 相似文献
2.
本文讨论了传统的径向基(RBF)神经网络聚类算法的基本原理,针对其选取初始中心矢量的不足,提出了一种新的选择初始中心矢量的方法,给出了新的学习算法,并将其应用于目标识别.仿真结果表明,新算法比传统的RBF算法具有更强的聚类能力,使目标识别更加准确. 相似文献
3.
在地球物理勘探中需要利用测井资料了解地下地质情况,其中测井曲线分层是首先要完成的基础工作。神经网络法建立测井曲线自动分层模型,计算方便,结果客观性较强,分层结果精确。 相似文献
4.
莫北地区侏罗纪三工河组,岩性主要是中、细砂岩,属低孔低渗储层,所以储层流体性质的识别是该地区急需解决的问题。针对常规测井储层识别准确率不佳的情况,提出了Bp神经网络这种数学方法进行储层的油、气、水、干层的识别。提出43个试油层段的测井曲线特征值,以对流体性质敏感并且在交会图上具有比较明显区分度的密度值(DEN)、孔隙度(POR)、电阻率值(RT)和含水饱和度值(SW)作为输入向量,经程序训练判别准确率达到满足的要求后根据得到的权值、阈值编写神经网络预测的程序挂接在测井解释软件中,从而实现了Bp神经网络在储层中的自动化识别。 相似文献
5.
6.
针对苏里格气田含气砂岩厚度薄、延伸有限及其波阻抗范围与泥岩存在重叠的难题,对苏里格气田储层敏感性地球物理参数进行了分析,选取了密度-孔隙度-自然伽马进行联合反演预测含气砂岩分布,避免了单参数反演的多解性,提高了储层反演的精度.经钻井证实该方法能较好地对苏里格气田含气砂岩进行预测. 相似文献
7.
卷积图神经网络(Convolutional Graph Neural Network,ConvGNN)以其强大的表达能力被广泛应用于社交网络、生物网络等领域的网络表示学习中,多粒度网络表示学习已被证明能够改善已有网络嵌入方法的性能,但目前尚缺乏以改善ConvGNN性能为目标的框架.针对此问题,提出一种基于ConvGNN的多粒度网络表示学习框架M-NRL,分为四个模块:粒化模块、训练模块、推理模块和融合模块.粒化模块构造从细到粗的多粒度网络并保留不同粒度节点的属性和标签信息,训练模块在最粗粒度的网络上以端到端的方法训练任意一种ConvGNN并优化其模型参数,推理模块使用优化后的ConvGNN推理出不同粒度网络的节点表示,融合模块采用注意力权重聚合不同粒度的节点表示以产生最终的节点表示.在四个公开引文网络数据集上进行的半监督节点分类任务验证了M-NRL的有效性,实验结果表明,MNRL不仅能加速现有ConvGNN的训练,还可以增强其最终的表示质量. 相似文献
8.
基于神经网络的预测模型的比较研究 总被引:1,自引:0,他引:1
随着经济预测、电力预测等各种预测的兴起,预测对各种领域的重要性开始显现.针对在建立预测模型时不能准确判别使用合适的神经网络,论文归纳了几种常用干预测的神经网络:BP神经网络、RBF神经网络、小波神经网络、组合神经网络,并总结了相应的优缺点,及其适用的预测范围.以某蓄电池厂近几年的销售量为例,检验各种预测模型的精度.预测结果显示,用单一预测模型进行预测时,因自身的局限,使其预测精度和稳定性不高.相比之下,组合预测模型更能有效提高预测精度,可以较充分的降低预测风险,保证预测结果的稳健性. 相似文献
9.
提出一种量子LM(Levenberg Marquardt,LM)神经网络与粗糙集相结合的智能识别方法,以替代传统的统计识别方法和工程应用中以单一智能控制为基础的识别方法.基于LM神经网络的技术方案可以整理测井定位数据,提高预测的准确性;量子计算具有并行和类映射的优势;通过削减冗余信息和简化信息量,粗糙集可以降低量子LM神经网络的复杂性,缩短数据处理时间,削减神经网络的负担.通过在石油储层识别实践中的应用证明:该方法可以有效提高计算速度和识别精度,降低成本. 相似文献
10.
储层流动单元指数(FZI)能够从岩石物理相的角度体现出孔渗关系,可作为孔渗关系分析的辅助性参数。为了在孔隙度、渗透率未知的情况下对逐个采样点求取FZI,在分析泌阳凹陷白云岩分布区关键井的岩心数据和多种测井资料的基础上,建立了一种基于椭圆基函数(Ellipse Basis Function)的模糊神经网络FZI预测模型,该预测系统可根据学习样本自行创建或删减模糊规则。测井资料信息量庞大,因此这种具有自学习机制的预测系统有利于有效信息的提取和利用,特别对于复杂储层而言,减轻了预测过程中对先验信息的依赖程度,因而效率和精度更高。 相似文献
11.
能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量,这是近年来葡萄酒评价领域的热门研究课题.为了研究这一问题,本文先用主成份分析简化理化指标和芳香物质,建立BP神经网络确定这些指标关于葡萄酒质量的权重.在分析理化指标是否能评价葡萄酒质量的问题上,我们引入粒度一致性的概念,结合线性加权分析法与灰度关联分析,对评价问题进行粒度一致性分析.实验数据证明,葡萄和葡萄酒的理化指标对葡萄酒质量有影响,但不能全面评价葡萄酒质量.本文所使用的该种组合分析方法,对葡萄酒质量的量化评价具有重要指导意义. 相似文献
12.
由于储层的非均匀性,传统的方法很难得到真实反映储层特性的结果。采用了遗传算法与BP神经网络相结合,利用遗传算法的全局寻优特点,优化神经网络的连接权值和阀值,从而提高网络的训练精度和预测精度。将相似度的概念引入到测井中,定义了相似度在测井中的计算公式,提出了相似度与遗传神经网络相结合的方法。根据取心井段储层物性与测井信息的关系,选取相应的测井曲线,运用MATLAB中神经网络工具箱建立神经网络模型并训练。实例研究表明,预测准确性较高,且可以有效地控制预测精度,避免了因储层差别大而造成的预测精度降低的现象。 相似文献
13.
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型.采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型.为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性. 相似文献
14.
岩爆是典型高地应力区主要地质灾害之一,其预测理论和发生机制的研究目前并不成熟.本文通过选择合适的影响岩爆程度的主要因素,应用BP神经网络对岩爆样本进行训练并利用预测样本进行检验,由于BP神经网络的初始权值和阀值对网络学习效率和预测结果有影响,因此其对检验样本的预测结果往往不够理想.利用粒子群算法(PSO)对BP网络的初始权值和阀值进行优化,将改进后的BP神经网络算法应用于预测,预测的结果优于BP神经网络.表明利用PSO-BP神经网络算法对实际工程中的岩爆进行预测是可行的. 相似文献
15.
基于遗传算法优化BP神经网络的TIG焊缝尺寸预测模型 总被引:2,自引:0,他引:2
建立了4-12-4结构的误差反向传播(BP)神经网络.以训练样本预测误差作为适应度函数,采用具有全局寻优功能的遗传算法得到最优化的BP神经网络的权值和阀值.以TIG焊接工艺参数电弧长度、保护气流量、焊接电流和焊接速度作为网络输入,焊缝的上余高、下余高、上焊宽和下焊宽作为网络的输出,优化后的BP网络模型具有良好的泛化能力和预测能力. 相似文献
16.
提出了一种新型的适用于大规模室内人流密度预测算法.在现有基于无线信号强度的人流密度估算算法基础上,引入加权运算来提升估算质量.进一步,根据连续若干个时间段内估算所得的人流密度,通过BP神经网络模型,对未来某一时刻该区域的人流密度进行预测.根据仿真模型和3个月的数据采集与分析,所得到预测模型的准确率达到了94.70%. 相似文献
17.
为了提高预测的精度,将神经网络组合预测模型应用于能源消费总量预测中,通过建立RBF、ELM、BP神经网络预测模型,用熵值法确定组合预测模型的加权系数,建立神经网络组合预测模型.利用安徽省统计年鉴获得的1991~2007年安徽省能源消费总量进行检验仿真,结果表明组合预测模型的误差较小,精度较高,预测结果更接近于实际情况. 相似文献
18.
用人工神经元方法预报IF钢性能 总被引:5,自引:1,他引:5
用人工神经元方法分析IF钢性能与成分、加工工艺之间关系,通过实验与现场数据训练1个前向网络的考核结果表明,该方法是用于大生产中IF钢成分与工艺设计的有效方法。 相似文献
19.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性. 相似文献