首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red blood cells infected with mature stages of the malaria parasite Plasmodium falciparum bind to the endothelial lining of capillaries and venules. This sequestration is important for the survival of the parasite but may have severe consequences for the host. For example, it is involved in the causation of cerebral malaria which carries 25% mortality. Knob-like protrusions present on the surface of infected erythrocytes have been considered necessary but not sufficient for this cytoadherence. Here we describe the adhesion to endothelial cells of infected erythrocytes which do not have knobs. A human monoclonal antibody (33G2) which was specific for an epitope containing regularly spaced dimers of glutamic acid present in the repeated amino-acid sequences of some defined P. falciparum antigens was found to inhibit cyto-adherence and may therefore be an important reagent for elucidating the molecular basis of parasite sequestration.  相似文献   

2.
从疟原虫的不同发育时期、不同的疫苗成份和宿主的遗传基因限制性等方面,深入研究抗疟疾疫苗。作用于红细胞前期的疟疾疫苗主要是抑制疟疾的临床发作,控制疟疾的传播;作用于红细胞期的疟疾疫苗诱导宿主体液免疫系统,产生特异性抗体,抑制疟原虫侵入和感染红细胞,达到减少疟原虫虫荷,降低疟疾的发病率和死亡率。作用于疟原虫有性生殖时期,控制疟疾传播的疟疾疫苗,其在于控制一个地区疟原虫的感染率和疟疾发病率,但对已感染疟原虫个体的免疫保护作用意义不大。在设计疟疾疫苗的过程中,必须克服不同个体的遗传基因限制性问题。由于疟原虫生活史的复杂性,同时也必须考虑到疟原虫不同发育阶段抗原成份的复杂性。  相似文献   

3.
M H Rodriguez  M Jungery 《Nature》1986,324(6095):388-391
Several observations suggest that iron is essential for the development of malaria parasites but there is evidence that the parasites in erythrocytes do not obtain iron from haemoglobin. The total haemin level in parasitized erythrocytes does not vary during parasite development, indicating that the iron-containing moiety of haemoglobin is not detectably metabolized. Although parasite proteases can degrade the protein part of haemoglobin in red cells, no parasite enzymes that degrade haemin have been identified. In mammalian cells, haemin is degraded to carbon monoxide and bilirubin by the enzyme haeme oxygenase. This enzyme has not been found in malaria parasites. In fact haemin has been found to be toxic to parasite carbohydrate metabolism. Thus, iron apparently cannot be liberated from haemin and instead is sequestered in infected red cells as haemozoin, the characteristic pigment associated with malarial infection. If iron bound to transferrin is the source of ferric ions for malaria parasites within mature erythrocytes, then the parasite must synthesize its own transferrin receptor and localize it on the surface of the infected cell, because the receptors for transferrin are lost during erythrocyte maturation. Our results here suggest that Plasmodium falciparum synthesizes its own transferrin receptors enabling it to take up iron from transferrin by receptor-mediated endocytosis.  相似文献   

4.
Rapid switching to multiple antigenic and adhesive phenotypes in malaria.   总被引:67,自引:0,他引:67  
Adhesion of parasitized erythrocytes to post-capillary venular endothelium or uninfected red cells is strongly implicated in the pathogenesis of severe Plasmodium falciparum malaria. Neoantigens at the infected red-cell surface adhere to a variety of host receptors, demonstrate serological diversity in field isolates and may also be a target of the host-protective immune response. Here we use sequential cloning of P. falciparum by micromanipulation to investigate the ability of a parasite to switch antigenic and cytoadherence phenotypes. Our data show that antigens at the parasitized cell surface undergo clonal variation in vitro in the absence of immune pressure at the rate of 2% per generation with concomitant modulations of the adhesive phenotype. A clone has the potential to switch at high frequency to a variety of antigenic and adhesive phenotypes, including a new type of cytoadherence behaviour, 'auto-agglutination' of infected erythrocytes. This rapid appearance of antigenic and functional heterogeneity has important implications for pathogenesis and acquired immunity.  相似文献   

5.
I J Udeinya  L H Miller  I A McGregor  J B Jensen 《Nature》1983,303(5916):429-431
An important feature of Plasmodium falciparum malaria which differentiates it from other human malarias is that erythrocytes infected with trophozoites and schizonts are not present in the peripheral blood but are sequestered along capillary and venular endothelium. Infected erythrocytes attach via parasite-induced ultrastructural modifications on the surface of the infected cells, called 'knobs'. This sequestration may be important for parasite survival because it prevents infected erythrocytes from circulating through the spleen where they could be eliminated. We have established an in vitro correlate of sequestration and used it to demonstrate that immune sera from repeatedly infected Aotus monkeys inhibit binding of infected erythrocytes to endothelial cells. We have investigated whether antiserum that blocks binding of one isolate of P. falciparum to target cells can block or reverse binding of other isolates. We report here that sera which block or reverse binding are strain-specific, indicating that the corresponding antigens on the surface of the infected erythrocytes are strain (isolate)-specific.  相似文献   

6.
Plasmodium falciparum infected erythrocytes containing mature trophozoites and schizonts sequester along venular endothelium and are not in the peripheral circulation of patients with malaria. Knobs appear on infected erythrocytes and are the points of attachment to endothelium. Sequestration may protect the parasite from splenic destruction and may play a role in the pathogenesis of cerebral malaria. Correlates of sequestration have been developed in vitro using cultured human endothelium and an amelanotic melanoma cell line. Knobless strains (K-) of P. falciparum fail to sequester in vivo and to bind to cells in vitro. We now present evidence that the receptor for cytoadherence is the glycoprotein, thrombospondin. Aotus monkey or human erythrocytes containing knobby (K+) but not Aotus erythrocytes containing knobless strains of P. falciparum bind to immobilized thrombospondin. Neither binds to the adhesive proteins laminin, fibronectin, factor VIII/von Willebrand factor or vitronectin. Both soluble thrombospondin and anti-thrombospondin antibodies inhibit binding of parasitized Aotus erythrocytes to immobilize thrombospondin and to melanoma cells which secrete thrombospondin.  相似文献   

7.
The primary event in the pathogenesis of severe malaria in Plasmodium falciparum infection is thought to be adherence of trophozoite- and schizont-infected erythrocytes to capillary endothelium, a process called sequestration. Identifying the endothelial molecules used as receptors is an essential step in understanding this disease process. Recent work implicates the membrane glycoprotein CD36 (platelet glycoprotein IV; refs 2-5) and the multi-functional glycoprotein thrombospondin as receptors. Although CD36 has a widespread distribution on microvascular endothelium, it may not be expressed on all capillary beds where sequestration occurs, especially in the brain. The role of thrombospondin in cell adhesion, in vitro or in vivo, is less certain. We have noticed that some parasites bind to human umbilical-vein endothelial cells independently of CD36 or thrombospondin. To screen for alternative receptors, we have developed a novel cell-adhesion assay using transfected COS cells, which confirms that CD36 is a cell-adhesion receptor. In addition, we find that an endothelial-binding line of P. falciparum binds to COS cells transfected with a complementary DNA encoding intercellular adhesion molecule-1. As this molecule is widely distributed on capillaries and is inducible, this finding may be relevant to the pathogenesis of severe malaria.  相似文献   

8.
Haemoglobin C, which carries a glutamate-to-lysine mutation in the beta-globin chain, protects West African children against Plasmodium falciparum malaria. Mechanisms of protection are not established for the heterozygous (haemoglobin AC) or homozygous (haemoglobin CC) states. Here we report a marked effect of haemoglobin C on the cell-surface properties of P. falciparum-infected erythrocytes involved in pathogenesis. Relative to parasite-infected normal erythrocytes (haemoglobin AA), parasitized AC and CC erythrocytes show reduced adhesion to endothelial monolayers expressing CD36 and intercellular adhesion molecule-1 (ICAM-1). They also show impaired rosetting interactions with non-parasitized erythrocytes, and reduced agglutination in the presence of pooled sera from malaria-immune adults. Abnormal cell-surface display of the main variable cytoadherence ligand, PfEMP-1 (P. falciparum erythrocyte membrane protein-1), correlates with these findings. The abnormalities in PfEMP-1 display are associated with markers of erythrocyte senescence, and are greater in CC than in AC erythrocytes. Haemoglobin C might protect against malaria by reducing PfEMP-1-mediated adherence of parasitized erythrocytes, thereby mitigating the effects of their sequestration in the microvasculature.  相似文献   

9.
硫酸软骨素A介导的恶性疟原虫感染的红细胞粘附   总被引:2,自引:0,他引:2  
对硫酸软骨素的粘附机制进行了初步探讨。研究表明,恶性疟原虫感染的红细胞可粘附于各种器官的微血管内皮细胞,这种粘附被认为是红细胞膜表面分子与内皮细胞表面分子间配体-受体相互作用的结果,CSA为内皮细胞表面感染的红细胞的粘附受体和恶性疟原虫红细胞膜蛋白1的配体。  相似文献   

10.
Glycosaminoglycans such as heparan sulphate and chondroitin sulphate are extracellular sugar chains involved in intercellular signalling. Disruptions of genes encoding enzymes that mediate glycosaminoglycan biosynthesis have severe consequences in Drosophila and mice. Mutations in the Drosophila gene sugarless, which encodes a UDP-glucose dehydrogenase, impairs developmental signalling through the Wnt family member Wingless, and signalling by the fibroblast growth factor and Hedgehog pathways. Heparan sulphate is involved in these pathways, but little is known about the involvement of chondroitin. Undersulphated and oversulphated chondroitin sulphate chains have been implicated in other biological processes, however, including adhesion of erythrocytes infected with malaria parasite to human placenta and regulation of neural development. To investigate chondroitin functions, we cloned a chondroitin synthase homologue of Caenorhabditis elegans and depleted expression of its product by RNA-mediated interference and deletion mutagenesis. Here we report that blocking chondroitin synthesis results in cytokinesis defects in early embryogenesis. Reversion of cytokinesis is often observed in chondroitin-depleted embryos, and cell division eventually stops, resulting in early embryonic death. Our findings show that chondroitin is required for embryonic cytokinesis and cell division.  相似文献   

11.
Type I interferons (IFN-I) are important cytokines linking innate and adaptive immunity. Plasmacytoid dendritic cells make high levels of IFN-I in response to viral infection and are thought to be the major source of the cytokines in vivo. Here, we show that conventional non-plasmacytoid dendritic cells taken from mice infected with a dendritic-cell-tropic strain of lymphocytic choriomeningitis virus make similarly high levels of IFN-I on subsequent culture. Similarly, non-plasmacytoid dendritic cells secrete high levels of IFN-I in response to double-stranded RNA (dsRNA), a major viral signature, when the latter is introduced into the cytoplasm to mimic direct viral infection. This response is partially dependent on the cytosolic dsRNA-binding enzyme protein kinase R and does not require signalling through toll-like receptor (TLR) 3, a surface receptor for dsRNA. Furthermore, we show that sequestration of dsRNA by viral NS1 (refs 6, 7) explains the inability of conventional dendritic cells to produce IFN-I on infection with influenza. Our results suggest that multiple dendritic cell types, not just plasmacytoid cells, can act as specialized interferon-producing cells in certain viral infections, and reveal the existence of a TLR-independent pathway for dendritic cell activation that can be the target of viral interference.  相似文献   

12.
Malaria. Cooperative silencing elements in var genes   总被引:11,自引:0,他引:11  
Deitsch KW  Calderwood MS  Wellems TE 《Nature》2001,412(6850):875-876
Each Plasmodium falciparum malaria parasite carries about 50 var genes from a diverse family that encode variable adhesion proteins on the infected red blood cells of the host, but individual parasites single out just one var gene for expression and silence all the others. Here we show that this silencing is established during the DNA-synthesis phase (S phase) of the cell cycle and that it depends on the cooperative interaction between two elements in separate control regions of each var gene (the 5'-flanking region and the intron). This finding should help to clarify the mechanisms by which parasites coordinate the silencing and activation of var genes that are responsible for antigenic variation in malaria.  相似文献   

13.
绵羊自然感染附红细胞体对绵羊红细胞的影响   总被引:2,自引:0,他引:2  
选择1岁左右自然感染附红细胞体的杂交育肥绵羊为试验动物,采血,观察红细胞的形态,并测定RBC、Hb、PCV、红细胞脆性(最小脆性和最大脆性)、红细胞ATPase和SOD活性、红细胞C3b受体(E-C3bRR)花环率和红细胞免疫复合物(E-ICR)花环率.检测结果显示:与对照组相比,急性感染组绵羊红细胞脆性、RBC、Hb、PCV、红细胞ATPase和SOD活性及E-C3bRR率和E-ICR率呈降低趋势;但隐性感染组所测定指标变化不明显.表明附红细胞体侵袭红细胞后,感染越强,红细胞就易破裂而溶血、红细胞内外阳离子平衡失调、红细胞抗氧化能力降低,同时,破坏了红细胞膜表面的C3b受体,红细胞膜表面游离状态的C3b受体数量明显减少,机体红细胞的免疫黏附活性降低,红细胞免疫功能低下.  相似文献   

14.
The cytokine transforming growth factor-beta (TGF-beta) is an important negative regulator of adaptive immunity. TGF-beta is secreted by cells as an inactive precursor that must be activated to exert biological effects, but the mechanisms that regulate TGF-beta activation and function in the immune system are poorly understood. Here we show that conditional loss of the TGF-beta-activating integrin alpha(v)beta8 on leukocytes causes severe inflammatory bowel disease and age-related autoimmunity in mice. This autoimmune phenotype is largely due to lack of alpha(v)beta8 on dendritic cells, as mice lacking alpha(v)beta8 principally on dendritic cells develop identical immunological abnormalities as mice lacking alpha(v)beta8 on all leukocytes, whereas mice lacking alpha(v)beta8 on T cells alone are phenotypically normal. We further show that dendritic cells lacking alpha(v)beta8 fail to induce regulatory T cells (T(R) cells) in vitro, an effect that depends on TGF-beta activity. Furthermore, mice lacking alpha(v)beta8 on dendritic cells have reduced proportions of T(R) cells in colonic tissue. These results suggest that alpha(v)beta8-mediated TGF-beta activation by dendritic cells is essential for preventing immune dysfunction that results in inflammatory bowel disease and autoimmunity, effects that are due, at least in part, to the ability of alpha(v)beta8 on dendritic cells to induce and/or maintain tissue T(R) cells.  相似文献   

15.
Sigal LJ  Crotty S  Andino R  Rock KL 《Nature》1999,398(6722):77-80
Cytotoxic T lymphocytes (CTLs) are thought to detect viral infections by monitoring the surface of all cells for the presence of viral peptides bound to major histocompatibility complex (MHC) class I molecules. In most cells, peptides presented by MHC class I molecules are derived exclusively from proteins synthesized by the antigen-bearing cells. Macrophages and dendritic cells also have an alternative MHC class I pathway that can present peptides derived from extracellular antigens; however, the physiological role of this process is unclear. Here we show that virally infected non-haematopoietic cells are unable to stimulate primary CTL-mediated immunity directly. Instead, bone-marrow-derived cells are required as antigen-presenting cells (APCs) to initiate anti-viral CTL responses. In these APCs, the alternative (exogenous) MHC class I pathway is the obligatory mechanism for the initiation of CTL responses to viruses that infect only non-haematopoietic cells.  相似文献   

16.
This study was designed to test the hypothesis that T-cell effector mechanisms are required for protective immunity to malaria sporozoites. Administration of neutralizing monoclonal antibodies against gamma interferon (gamma IFN) to immune hosts, reversed sterile immunity to sporozoite challenge, by allowing the growth of exoerythrocytic forms (EEF) and thus the development of parasitaemia. Immune animals also developed infections when depleted in vivo of their suppressor/cytotoxic T cells expressing the CD8 antigen (CD8+) but not when depleted of helper T cells expressing CD4 antigen (CD4+), before sporozoite challenge. Passive transfer of immune immunoglobin alone, or adoptive transfer of immune T cells alone, conferred partial protection to naive recipients. Transfer of both immune components resulted in significantly greater protection. This transferred immunity was reversed by the in vivo neutralization of gamma IFN. Thus, sterile immunity to sporozoite challenge requires the neutralization of sporozoites by antibodies and the inhibition of EEF development by gamma IFN with the participation of CD8+ cells.  相似文献   

17.
The 17XNL strain of Plasmodium yoelii induces a highly effective and permanent T-cell dependent immunity in mice of the CBA strain; the lethal variant P. yoelii 17XL and P. berghei (ANKA) fail to activate an effective immune response in the same host. These differences in immunogenicity are unexplained. We recently observed that in CBA/CaJ mice the intracellular blood stages of P. yoelii 17XNL were almost exclusively within reticulocytes whereas lethal P. yoelii 17XL and P. berghei (ANKA), at comparable stages of infection, were predominantly erythrocytic. Induction of a reticulocytosis converted the normally lethal P. yoelii 17XL infection into a nonlethal one, and reticulocytic P. yoelii was shown to be more immunogenic than the erythrocytic form. Since one of the differences between reticulocytes and erythrocytes that might have influenced the development of immunity was greater expression of MHC antigens of the former cell type we examined the expression of H-2K, H-2D and Ia on reticulocytes infected with P. yoelii 17XNL. These cells showed a very marked increase in H-2K and D antigen expression compared to normal reticulocytes or erythrocytes. No Ia was detected. Red blood cells (RBC) infected with lethal P. yoelii 17XL or P. berghei showed no increase in H-2K or H-2D antigen expression. Finally, the level of expression of H-2K on P. yoelii 17XNL parasitized red blood cells from different strains of mice correlated closely with the ability of these strains to control the infection.  相似文献   

18.
Intestinal epithelial cells (IECs) provide a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestinal (GI) tract, but the influence of IECs on the development and regulation of immunity to infection is unknown. Here we show that IEC-intrinsic IkappaB kinase (IKK)-beta-dependent gene expression is a critical regulator of responses of dendritic cells and CD4+ T cells in the GI tract. Mice with an IEC-specific deletion of IKK-beta show a reduced expression of the epithelial-cell-restricted cytokine thymic stromal lymphopoietin in the intestine and, after infection with the gut-dwelling parasite Trichuris, fail to develop a pathogen-specific CD4+ T helper type 2 (T(H)2) response and are unable to eradicate infection. Further, these animals show exacerbated production of dendritic-cell-derived interleukin-12/23p40 and tumour necrosis factor-alpha, increased levels of CD4+ T-cell-derived interferon-gamma and interleukin-17, and develop severe intestinal inflammation. Blockade of proinflammatory cytokines during Trichuris infection ablates the requirement for IKK-beta in IECs to promote CD4+ T(H)2 cell-dependent immunity, identifying an essential function for IECs in tissue-specific conditioning of dendritic cells and limiting type 1 cytokine production in the GI tract. These results indicate that the balance of IKK-beta-dependent gene expression in the intestinal epithelium is crucial in intestinal immune homeostasis by promoting mucosal immunity and limiting chronic inflammation.  相似文献   

19.
Shi Y  Evans JE  Rock KL 《Nature》2003,425(6957):516-521
In infections, microbial components provide signals that alert the immune system to danger and promote the generation of immunity. In the absence of such signals, there is often no immune response or tolerance may develop. This has led to the concept that the immune system responds only to antigens perceived to be associated with a dangerous situation such as infection. Danger signals are thought to act by stimulating dendritic cells to mature so that they can present foreign antigens and stimulate T lymphocytes. Dying mammalian cells have also been found to release danger signals of unknown identity. Here we show that uric acid is a principal endogenous danger signal released from injured cells. Uric acid stimulates dendritic cell maturation and, when co-injected with antigen in vivo, significantly enhances the generation of responses from CD8+ T cells. Eliminating uric acid in vivo inhibits the immune response to antigens associated with injured cells, but not to antigens presented by activated dendritic cells. Our findings provide a molecular link between cell injury and immunity and have important implications for vaccines, autoimmunity and inflammation.  相似文献   

20.
The Toll-like receptor (TLR) family has important roles in microbial recognition and dendritic cell activation. TLRs 7 and 9 can recognize nucleic acids and trigger signalling cascades that activate plasmacytoid dendritic cells to produce interferon-alpha (IFN-alpha) (refs 7, 8). TLR7/9-mediated dendritic cell activation is critical for antiviral immunity but also contributes to the pathogenesis of systemic lupus erythematosus, a disease in which serum IFN-alpha levels are elevated owing to plasmacytoid dendritic cell activation. TLR7/9-induced IFN-alpha induction depends on a molecular complex that contains a TLR adaptor, MyD88, and IFN regulatory factor 7 (IRF-7) (refs 10-14), but the underlying molecular mechanisms are as yet unknown. Here we show that IkappaB kinase-alpha (IKK-alpha) is critically involved in TLR7/9-induced IFN-alpha production. TLR7/9-induced IFN-alpha production was severely impaired in IKK-alpha-deficient plasmacytoid dendritic cells, whereas inflammatory cytokine induction was decreased but still occurred. Kinase-deficient IKK-alpha inhibited the ability of MyD88 to activate the Ifna promoter in synergy with IRF-7. Furthermore, IKK-alpha associated with and phosphorylated IRF-7. Our results identify a role for IKK-alpha in TLR7/9 signalling, and highlight IKK-alpha as a potential target for manipulating TLR-induced IFN-alpha production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号