首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubules are highly dynamic protein polymers that form a crucial part of the cytoskeleton in all eukaryotic cells. Although microtubules are known to self-assemble from tubulin dimers, information on the assembly dynamics of microtubules has been limited, both in vitro and in vivo, to measurements of average growth and shrinkage rates over several thousands of tubulin subunits. As a result there is a lack of information on the sequence of molecular events that leads to the growth and shrinkage of microtubule ends. Here we use optical tweezers to observe the assembly dynamics of individual microtubules at molecular resolution. We find that microtubules can increase their overall length almost instantaneously by amounts exceeding the size of individual dimers (8 nm). When the microtubule-associated protein XMAP215 (ref. 6) is added, this effect is markedly enhanced and fast increases in length of about 40-60 nm are observed. These observations suggest that small tubulin oligomers are able to add directly to growing microtubules and that XMAP215 speeds up microtubule growth by facilitating the addition of long oligomers. The achievement of molecular resolution on the microtubule assembly process opens the way to direct studies of the molecular mechanism by which the many recently discovered microtubule end-binding proteins regulate microtubule dynamics in living cells.  相似文献   

2.
J Chen  Y Kanai  N J Cowan  N Hirokawa 《Nature》1992,360(6405):674-677
Neurons develop a highly polarized morphology consisting of dendrites and a long axon. Both axons and dendrites contain microtubules and microtubule-associated proteins (MAPs) with characteristic structures. Among MAPs, MAP2 is specifically expressed in dendrites whereas MAP2C and tau are abundant in the axon. But the influence of MAP2, MAP2C and tau on the organization of microtubule domains in dendrites versus axons is unknown. Both MAP2 and tau induce microtubule bundle formation in fibroblasts after transfection of complementary DNAs, and a long process resembling an axon is extended in Sf9 cells infected with recombinant baculovirus expressing tau. We have now expressed MAP2 and MAP2C in Sf9 cells in order to compare their morphology and the arrangement of their microtubules to that found in Sf9 cells expressing tau. We report here that the spacing between microtubules depends on the MAP expressed: in cells expressing MAP2, the distance is similar to that found in dendrites, whereas the spacing between microtubules in cells expressing MAP2C or tau is similar to that found in axons.  相似文献   

3.
Direct observation of microtubule dynamics in living cells   总被引:42,自引:0,他引:42  
P J Sammak  G G Borisy 《Nature》1988,332(6166):724-726
The study of cell locomotion is fundamental to such diverse processes as embryonic development, wound healing and metastasis. Since microtubules play a role in establishing the leading lamellum and maintaining cell polarity, it is important to understand their dynamic behaviour. In vitro, subunits exchange with polymer by treadmilling and by dynamic instability. Disassembly events can be complete (catastrophic) or incomplete (tempered). In vivo, microtubules are in dynamic equilibrium with subunits with a half-time for turnover of 4-20 min. Microtubules grow by elongation of their ends and are replaced one by one with turnover being most rapid at the periphery. Although previous results are consistent with dynamic instability, we sought to directly test the mechanism of turnover. Direct observations of fluorescent microtubules in the fibroblast lamellum show that individual microtubules undergo rounds of assembly and disassembly from the same end. Reorganization of the microtubule network occurs by a tempered mode of dynamic instability.  相似文献   

4.
Snaith HA  Sawin KE 《Nature》2003,423(6940):647-651
Microtubules have a central role in eukaryotic cell polarity, in part through interactions between microtubule end-binding proteins and the cell cortex. In the fission yeast Schizosaccharomyces pombe, microtubules and the polarity modulator tea1p maintain cylindrical cell shape and strictly antipodal cell growth. The tea1p protein is transported to cell tips by association with growing microtubule plus ends; once at cell tips, tea1p releases from microtubule ends and associates with the cell cortex, where it coordinates polarized growth. Here we describe a cortical protein, mod5p, that regulates the dynamic behaviour of tea1p. In mod5Delta cells, tea1p is efficiently transported on microtubules to cell tips but fails to anchor properly at the cortex and thus fails to accumulate to normal levels. mod5p contains a signal for carboxy-terminal prenylation and in wild-type cells is associated with the plasma membrane at cell tips. However, in tea1Delta cells, although mod5p remains localized to the plasma membrane, mod5p is no longer restricted to the cell tips. We propose that tea1p and mod5p act in a positive-feedback loop in the microtubule-mediated regulation of cell polarity.  相似文献   

5.
T Horio  H Hotani 《Nature》1986,321(6070):605-607
It has previously been shown that two populations of microtubules coexist in a dynamically unstable manner in vitro: those in one population elongate while those in the other shorten and finally disappear. This conclusion was based on changes in the number and length distribution of microtubules after dilution of the microtubule solution. Here, we demonstrate directly that growing and shortening populations coexist in steady-state conditions, by visualization of the dynamic behaviour of individual microtubules in vitro by dark-field microscopy. Real-time video recording reveals that both ends of a microtubule exist in either the growing or the shortening phase and alternate quite frequently between the two phases in a stochastic manner. Moreover, growing and shortening ends can coexist on a single microtubule, one end continuing to grow simultaneously with shortening at the other end. We find no correlation in the phase conversion either among individual microtubules or between the two ends of a single microtubule. The two ends of any given microtubule have remarkably different characteristics; the active end grows faster, alternates in phase more frequently and fluctuates in length to a greater extent than the inactive end. Microtubule-associated proteins (MAPs) suppress the phase conversion and stabilize microtubules in the growing phase.  相似文献   

6.
7.
Translocation of vesicles from squid axoplasm on flagellar microtubules   总被引:2,自引:0,他引:2  
S P Gilbert  R D Allen  R D Sloboda 《Nature》1985,315(6016):245-248
Directed intracellular particle movement is a fundamental process characteristic of all cells. During fast axonal transport, membranous organelles move at rapid rates, from 1 to 5 micron s-1, in either the orthograde or retrograde direction along the neurone and can traverse distances as long as 1 m (for reviews, see refs 1-3). Recent studies indicate that this extreme example of intracellular motility can occur along single microtubules, but the molecules generating the motile force have not been identified or localized. It is not known whether the force-transducing 'motor' is associated with the moving particle or with the microtubule lattice. To distinguish between these hypotheses and to characterize the membrane-cytoskeletal interactions that occur during vesicle translocations, we have developed a reconstituted model for microtubule-based motility. We isolated axoplasmic vesicles from the giant axon of the squid Loligo pealei as described previously. The vesicles (35-475 nm in diameter) were then added to axonemes of Arbacia punctulata spermatozoa that served as a source of microtubules. Axonemes were used because the tubulin subunit lattice of the A-subfibre of a given outer doublet is the same as the subunit lattice of neuronal microtubules along which motility occurs. Moreover, all the microtubules of a single axoneme show the same structural polarity, indicating that the axoneme represents an oriented microtubule substrate. Here we demonstrate that vesicle motility is ATP-dependent, that it is not mediated by the flagellar force-transducing molecule dynein and that the direction of movement is not specified by microtubule polarity.  相似文献   

8.
Direct evidence that growth cones pull   总被引:15,自引:0,他引:15  
P Lamoureux  R E Buxbaum  S R Heidemann 《Nature》1989,340(6229):159-162
There is controversy over whether axonal elongation is the result of a pulling growth cone and the role of tension in axonal elongation. Earlier in this decade, the consensus was that axons or neurites elongated from tension generated by forward motility of the growth cone. It was presumed that contractile filopodia were the source of the tension moving the growth cone. But this view was challenged by experiments showing that neurites elongate, albeit abnormally, in the presence of cytochalasin, which inhibits growth-cone and filopodial movements. Additionally, high resolution, video-enhanced observations of growth-cone activity argued against filopodial shortening as a source of tension, suggesting instead that an extrusion of cytoplasm rather than a pulling process, is the key event in neurite elongation. Studies of slow axonal transport, however, indicate that much slower cytoskeletal pushing underlies axonal elongation. We report here direct measurements of neurite force as a function of growth-cone advance which show that they are linearly related and accompanied by apparent neurite growth. No increase in force occurs in neurites whose growth cone fails to advance.  相似文献   

9.
Howard J  Hyman AA 《Nature》2003,422(6933):753-758
An important function of microtubules is to move cellular structures such as chromosomes, mitotic spindles and other organelles around inside cells. This is achieved by attaching the ends of microtubules to cellular structures; as the microtubules grow and shrink, the structures are pushed or pulled around the cell. How do the ends of microtubules couple to cellular structures, and how does this coupling regulate the stability and distribution of the microtubules? It is now clear that there are at least three properties of a microtubule end: it has alternate structures; it has a biochemical transition defined by GTP hydrolysis; and it forms a distinct target for the binding of specific proteins. These different properties can be unified by thinking of the microtubule as a molecular machine, which switches between growing and shrinking modes. Each mode is associated with a specific end structure on which end-binding proteins can assemble to modulate dynamics and couple the dynamic properties of microtubules to the movement of cellular structures.  相似文献   

10.
A Caceres  K S Kosik 《Nature》1990,343(6257):461-463
Neurons in culture can have fundamentally distinct morphologies which permit their cytological identification and the recognition of their neurites as axons or dendrites. Microtubules may have a role in determining morphology by the selective stabilization of spatially distinct microtubule subsets. The plasticity of a neurite correlates inversely with the stability of its component microtubules: microtubules in growth cones are very dynamic, and in initial neurites there is continuous incorporation of labelled subunits, whereas in mature neurites, microtubules are highly stabilized. The binding of microtubule-associated proteins to the microtubules very probably contributes to this stability. Cerebellar neurons in dissociated culture initially extend exploratory neurites and, after a relatively constant interval, become polarized. Polarity becomes evident when a single neurite exceeds the others in length. These stable neurites cease to undergo the retractions and extensions characteristic of initial neurites and assume many features of axons and dendrites. We have now studied the role of the neuronal microtubule-associate protein tau in neurite polarization by selectively inhibiting tau expression by the addition of antisense oligonucleotides to the culture media. Although the extension of initial exploratory neurites occurred normally, neurite asymmetry was inhibited by the failure to elaborate an axon.  相似文献   

11.
Bieling P  Laan L  Schek H  Munteanu EL  Sandblad L  Dogterom M  Brunner D  Surrey T 《Nature》2007,450(7172):1100-1105
The microtubule cytoskeleton is essential to cell morphogenesis. Growing microtubule plus ends have emerged as dynamic regulatory sites in which specialized proteins, called plus-end-binding proteins (+TIPs), bind and regulate the proper functioning of microtubules. However, the molecular mechanism of plus-end association by +TIPs and their ability to track the growing end are not well understood. Here we report the in vitro reconstitution of a minimal plus-end tracking system consisting of the three fission yeast proteins Mal3, Tip1 and the kinesin Tea2. Using time-lapse total internal reflection fluorescence microscopy, we show that the EB1 homologue Mal3 has an enhanced affinity for growing microtubule end structures as opposed to the microtubule lattice. This allows it to track growing microtubule ends autonomously by an end recognition mechanism. In addition, Mal3 acts as a factor that mediates loading of the processive motor Tea2 and its cargo, the Clip170 homologue Tip1, onto the microtubule lattice. The interaction of all three proteins is required for the selective tracking of growing microtubule plus ends by both Tea2 and Tip1. Our results dissect the collective interactions of the constituents of this plus-end tracking system and show how these interactions lead to the emergence of its dynamic behaviour. We expect that such in vitro reconstitutions will also be essential for the mechanistic dissection of other plus-end tracking systems.  相似文献   

12.
S A Lewis  I E Ivanov  G H Lee  N J Cowan 《Nature》1989,342(6249):498-505
Here we report that the microtubule-associated proteins MAP2 and tau share two separable functional domains. One is the microtubule-binding site which serves to nucleate microtubule assembly; the second is a short C-terminal alpha-helical sequence which can crosslink microtubules by means of a hydrophobic zipper interaction into dense stable parallel arrays characteristic of axons or dendrites. Thus, interactions between molecules of a single type are capable of drastically reorganizing microtubules and completely suppressing their dynamic properties.  相似文献   

13.
For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.  相似文献   

14.
Experimentally induced alteration in the polarity of developing neurons   总被引:5,自引:0,他引:5  
C G Dotti  G A Banker 《Nature》1987,330(6145):254-256
Despite the great diversity of shapes exhibited by different classes of nerve cells, nearly all neurons share one feature in that they have a single axon and several dendrites. The two types of processes differ in their morphology, in their rate of growth, in the macromolecular composition of their cytoskeletons and surface membranes, and in their synaptic polarity. When hippocampal neurons are dissociated from the embryonic brain and cultured, they reproducibly establish this basic form with a single axon and several dendrites, despite the absence of any spatially organized environmental cues, and without the need for cell to cell contact. We have cut the axons of young hippocampal neurons within a day of their development: in some cases the initial axon regenerated, but more frequently one of the other processes, which if undisturbed would have become a dendrite, instead became the axon. Frequently the stump of the original axon persisted following the transection and subsequently became a dendrite. Evidently the neuronal processes that first develop in culture have the capacity to form either axons or dendrites. The acquisition of axonal characteristics by one neuronal process apparently inhibits the others from becoming axons, so they subsequently become dendrites.  相似文献   

15.
M P Koonce  J Tong  U Euteneuer  M Schliwa 《Nature》1987,328(6132):737-739
Microtubules are versatile cellular polymers that play a role in cell shape determination and mediate various motile processes such as ciliary and flagellar bending, chromosome movements and organelle transport. That a sliding microtubule mechanism can generate force has been demonstrated in highly ordered structures such as axonemes, and microtubule-based force generation almost certainly contributes to the function of mitotic and meiotic spindles. Most cytoplasmic microtubule arrays, however, do not exhibit the structural regularity of axonemes and some spindles, and often appear disorganized. Yet many cellular activities (such as shape changes during morphogenesis, axonal extension and spindle assembly) involve highly coordinated microtubule behaviour and possibly require force generated by an intermicrotubule sliding mechanism, or perhaps use sliding to move microtubules rapidly into a protrusion for stabilization. Here we show that active sliding between cytoplasmic microtubules can occur in microtubule bundles of the amoeba Reticulomyxa. A force-producing mechanism of this sort could be used by this organism to facilitate the extension of cell processes and to generate the dynamic movements of the cytoplasmic network.  相似文献   

16.
K J Kotrla  C S Goodman 《Nature》1984,311(5982):151-153
During development, neurones find and interconnect with their targets in a remarkably precise way. The unfolding of neuronal specificity involves a series of highly specific recognition events which are likely to be coordinated by the spatial and temporal expression of many different surface molecules. At early stages of development, neuronal recognition occurs most dramatically at the tips of growing axons, at growth cones and their filopodia. Previous studies on the grasshopper embryo suggest that specific filopodial contacts lead to the stereotyped patterns of selective axonal fasciculation; these results support the 'labelled pathways' hypothesis which predicts that the different neighbouring axon fascicles in the embryonic neuropil within filopodial grasp are differentially labelled. To uncover the molecular labels on fasciculating embryonic axons, we screened 2,000 monoclonal antibodies generated against the embryonic neuroepithelium. Here we describe three antibodies which reveal surface antigens whose temporal and spatial expression during embryogenesis correlate with the predictions of the model. In particular, the Mes-2 antibody recognizes an antigen which is transiently expressed on the surface of only 4 out of approximately 1,000 neurones in each metathoracic hemisegment during a short period of embryogenesis. The growth cones of two of these neurones fasciculate in the periphery and innervate the same target. Moreover, they transiently express the Mes-2 surface antigen while doing so.  相似文献   

17.
MOR1 is essential for organizing cortical microtubules in plants   总被引:56,自引:0,他引:56  
Microtubules orchestrate cell division and morphogenesis, but how they disassemble and reappear at different subcellular locations is unknown. Microtubule organizing centres are thought to have an important role, but in higher plants microtubules assemble in ordered configurations even though microtubule organizing centres are inconspicuous or absent. Plant cells generate highly organized microtubule arrays that coordinate mitosis, cytokinesis and expansion. Inhibiting microtubule assembly prevents chromosome separation, blocks cell division and impairs growth polarity. Microtubules are essential for the formation of cell walls, through an array of plasma-membrane-associated cortical microtubules whose control mechanisms are unknown. Using a genetic strategy to identify microtubule organizing factors in Arabidopsis thaliana, we isolated temperature-sensitive mutant alleles of the MICROTUBULE ORGANIZATION 1 (MOR1) gene. Here we show that MOR1 is the plant version of an ancient family of microtubule-associated proteins. Point mutations that substitute single amino-acid residues in an amino-terminal HEAT repeat impart reversible temperature-dependent cortical microtubule disruption, showing that MOR1 is essential for cortical microtubule organization.  相似文献   

18.
S Okabe  N Hirokawa 《Nature》1990,343(6257):479-482
The cytoskeleton has an important role in the generation and maintenance of the structure of the axon. Microtubules, neurofilaments and actin, together with various kinds of associated proteins, form highly organized dynamic cytoskeletal structures. Because tubulin and actin molecules are essential cytoskeletal components and are transported down the axon, it is important to understand their dynamic behaviour within the axon. Although previous pulse-labelling studies have indicated that the axonal cytoskeleton is a static complex travelling down the axon, this view has been challenged by the results of several recent experiments. We have now addressed this question by analysing the recovery of fluorescence after photobleaching fluorescent analogues of tubulin and actin in the axons of cultured neurons. We did not observe movement or spreading of bleached zones along the axon, both in neurons injected with fluorescein-labelled tubulin and actin. All bleached zones recovered their fluorescence gradually, however, indicating that microtubules and actin filaments are not static polymers moving forward within the axon, but are dynamic structures that continue to assemble along the length of the axon.  相似文献   

19.
Nuclear envelope separates cell genome from cyto-plasm in eucaryotic cells and plays a pivotal role in the cell life. The nuclear envelope is composed of two jointed membranes, the inner membrane and the out membrane, embedded the nuclear pore complexes. The out membrane is continuous with the endoplasmic reticulum (ER). The ARTICLES inner membrane faces to and connects with the chromatin through the nuclear lamina, an intermediate filamentous network thought to play a structural role for…  相似文献   

20.
Vinblastine is one of several tubulin-targeting Vinca alkaloids that have been responsible for many chemotherapeutic successes since their introduction in the clinic as antitumour drugs. In contrast with the two other classes of small tubulin-binding molecules (Taxol and colchicine), the binding site of vinblastine is largely unknown and the molecular mechanism of this drug has remained elusive. Here we report the X-ray structure of vinblastine bound to tubulin in a complex with the RB3 protein stathmin-like domain (RB3-SLD). Vinblastine introduces a wedge at the interface of two tubulin molecules and thus interferes with tubulin assembly. Together with electron microscopical and biochemical data, the structure explains vinblastine-induced tubulin self-association into spiral aggregates at the expense of microtubule growth. It also shows that vinblastine and the amino-terminal part of RB3-SLD binding sites share a hydrophobic groove on the alpha-tubulin surface that is located at an intermolecular contact in microtubules. This is an attractive target for drugs designed to perturb microtubule dynamics by interfacial interference, for which tubulin seems ideally suited because of its propensity to self-associate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号