首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
通过详细的野外调查,发现陕西神木邱家鄢地区存在一古河流阶地,根据该阶地上覆晚第三系红粘土推测该阶地为晚第三纪形成的。对该阶地上覆地层进行调查表明,该区晚第三纪红粘土之下存在约53米的风成砂层和河流相砂层。对红粘土和粉砂层进行古地磁测年样品的采集和测试。古地磁研究结果表明,该剖面底部的年代约在6.8 Ma左右,而红粘土与粉砂层之间的界限在6.27 Ma。根据深度-年代之间的关系,推算得出底部粉砂层的沉积速率比上部红粘土的沉积速率要快10倍以上,结合区域气候变化和构造运动历史的研究,邱家鄢剖面在(6.8-6.27)Ma之间快速沉积粉砂层的来源可能是中游黄河的河漫滩,指示了山陕峡谷段南北流向的古黄河可能在中新世晚期的6.8 Ma以前已经在该区出现。  相似文献   

2.
野外考察发现,陕西省神木县盘塘至山西兴县黑峪口黄河两岸发育四级第四纪河流阶地,阶地前缘基座出露,与现今黄河河面高差分别为12,50,80和130 m。四级阶地上覆盖厚度不等的黄土层,其厚度在T1阶地上最大约为20 m,在T2阶地上约为33 m,在T3阶地上不同区域黄土厚度不一,最厚处约为37 m,在T4阶地上黄土层厚度最大,约为43 m。分别对T2阶地、T3阶地和T4阶地上河流相砂层进行电子自旋共振(ESR)测年样品采集。ESR测年结果显示,T2阶地的形成时代约为0.609 Ma,T3阶地的形成时代约为0.876 Ma,T4阶地的形成时代为0.97±0.107 Ma。为了与测年结果相互印证,对T3和T4阶地上的黄土进行磁化率和古地磁样品的采集。古地磁结果显示,T3阶地上的黄土底层未能到达B/M界限,说明黄土层底部年龄不超过0.78 Ma,比河流相砂层的ESR测年结果更年轻。T4阶地黄土底部年龄约为1.07 Ma,与ESR测年结果的差别在ESR测年的误差范围内。四级阶地在形成年代上与兰州以及三门峡地区的阶地可以对比,说明构造运动控制的河流阶地在黄河中上游地区普遍存在。作为对之前工作的补充,对区域内一级第三纪阶地重新进行古地磁采样和测试,并结合四级第四纪阶地,对黄河在该区的侵蚀速率进行探讨。  相似文献   

3.
从三门峡黄河阶地的年代看黄河何时东流入海   总被引:2,自引:0,他引:2  
黄河三门峡峡谷入口地区发育了4级黄河阶地,阶地上普遍堆积了厚层黄土-古土壤系列,这为阶地测年提供了方便.古地磁测年、黄土-古土壤定年及热释光测年表明阶地T2,T3,T4分别形成于0.129,0.625,0.865Ma前.阶地的形成标志着0.865 Ma以来黄河在该区先后进行了4次强烈的下切过程,黄河东流入海的格局最迟在0.865 Ma前就已形成.  相似文献   

4.
从三门峡黄河阶地的年代看黄河何时东流入海   总被引:4,自引:0,他引:4  
黄河三门峡峡谷入口地区发育了4级黄河阶地,阶地上普遍堆积了厚层黄土古土壤系列,这为阶地测年提供了方便. 古地磁测年、黄土古土壤定年及热释光测年表明阶地T2,T3,T4分别形成于0.129,0.625,0.865Ma前. 阶地的形成标志着0.865 Ma以来黄河在该区先后进行了4次强烈的下切过程,黄河东流入海的格局最迟在0.865 Ma前就已形成.  相似文献   

5.
渭河上游陇西段河流阶地的形成时代及其成因   总被引:1,自引:0,他引:1  
野外考察发现渭河在其上游陇西县城附近共发育了七级河流阶地,阶地都具有砾石层和河漫滩组成的二元相结构,并且上覆不同厚度的黄土地层.应用古地磁、OSL、14C和黄土-古土壤序列等定年方法,初步确定了各级阶地的形成时代.同时根据阶地的沉积特征和年代数据的分析,发现构造运动和气候变化共同控制着该区渭河阶地的形成,构造抬升为河流提供了下切空间,气候变化则控制着渭河侧蚀堆积和下切过程,河流加积作用一般发生在冰期,而下切过程发生在从冰期向间冰期转型时期.另外通过阶地形成年代和拔河高度的线性分析,得到了870ka以来该区渭河平均下切速率为0.2m/ka,与区域其他河流下切速率有所不同,可能反映了秦岭造山带更新世期间构造活动的时空差异.  相似文献   

6.
通过对阶地砾石层上覆风成黄土的地层分析及其磁性地层学研究,在兰州地区墩洼山黄河阶地和五一山黄河阶地之间发现了一级新的阶地,其形成时代为1.0Ma BP,记录了兰州地区在这一时期发生的黄河强烈下切事件.对黄河第四级阶地(T4)上五一山和枣树沟两个黄土剖面的光释光(OSL)和古地磁年代学研究结果表明,在兰州地区黄河T4阶地的形成时代不是以前所认为的0.6Ma BP,而是0.86Ma BP,从而解决了地貌学界对兰州地区是否存在形成时代为0.8Ma BP左右阶地的长期疑问.兰州地区黄河1.0Ma BP新阶地的发现和T4阶地形成时代的重新厘定为黄河流域的地貌演化研究提供了新的资料.  相似文献   

7.
北京西山清水河马兰台的形成时代与环境   总被引:2,自引:0,他引:2  
从沉积学论证马兰阶地是气候阶地,关键在于进行砾石层的大筛分,马兰期砾石层9个样品和现代清水河河床16个样品大筛分的结果表明,马兰期砾石层属于冰缘气候条件下的河流沉积,根据顶部古土壤层和下部砂质粘土层的^14C测年数据,确定马兰期砾石层出露部分的堆积年代为距今30000-13000a B.P.,马兰阶地大约形成于11000a B.P..。  相似文献   

8.
根据长江万州-巫山段的阶地类型、沉积物特征和形成时代,结合青藏高原间歇性构造隆升过程、深海氧同位素变化曲线和青藏高原冰期-间冰期旋回,探讨730 ka B.P.以来万州-巫山段河流阶地的成因.研究表明,河流阶地不同阶段的下切速率响应了青藏高原的2期构造隆升事件:昆黄运动、共和运动.在与深海氧同位素气候周期旋回的比较中发现,阶地主要在冰期发生堆积,研究区T3、T2、T1阶地堆积期主要集中在MIS5d、MIS3b和YD冷期;下切期响应了共和运动的构造抬升过程.T4阶地主要发育于深海氧同位素MIS12阶段及青藏高原聂聂雄拉冰期,沉积物特征与同期珠穆朗玛峰北坡海洋型冰川具有相似的气候背景,表明T4阶地堆积期主要受控于气候变化.T5阶地的发育响应了重要构造运动——昆黄运动的构造抬升,下切至基岩;MIS18-MIS17气候转换期的不稳定性促进了河流的下切.构造运动、气候变化是万州-巫山段阶地形成演化的主要原因,并在对不同阶地的堆积-下切发育阶段的影响上具有相似性和差异性.  相似文献   

9.
南岭是我国重要的自然地理分界线和东亚季风环流屏障,第四纪期间粤北山地发育的多级河流阶地是研究南岭构造运动与气候变化的良好地质载体。粤北锦江扶溪段保留了5级阶地,运用光释光(OSL)技术对T2到T5级阶地的砾石层进行了测年,并从气候和构造角度分析了阶地成因。结果显示:T3形成于67 ka,对应于深海氧同位素的MIS4阶段;T2形成于51 ka,对应于MIS3b阶段;阶地沉积层堆积于冷期,气候变化影响着河流的侧蚀、堆积和下切作用交替进行,而新构造运动的构造抬升发动了足够的下切量使锦江扶溪段依次下切17 m、19 m、12 m和10 m形成T5、T4、T3和T2;南岸的河谷下切速率为0.3 mm/a,大于2倍的流域现代侵蚀速率,地貌发育符合年轻山地的抬升-下切-侵蚀模式。  相似文献   

10.
河南黄河-洛河地区地貌结构与特征   总被引:2,自引:0,他引:2  
运用河流阶地发育与地文期的理论分析了豫西黄河—洛河地区的地质背景、气候特点和古地理环境,探讨了研究区的石山、黄土和河流地貌特征。提出:1)嵩山、熊耳山和外方山发育有四级古夷平面。嵩山的垂直地貌特征表现为以嵩山为中心,呈中山、低山、丘陵和河谷平原的地貌格区。2)河洛地区三门峡孟津段黄河有四级阶地,均为基座阶地。第Ⅰ级阶地面拔河20 m,厚度2 m,上覆10 m厚黄土,其中冲积黄土厚5 m;第Ⅱ级阶地面河拔60 m,砾石层河拔40 m,厚度3 m,上覆8 m厚的冲积黄土和12 m厚的马兰黄土;第Ⅲ级阶地面河拔140 m,厚5 m,上覆20 m厚的冲积黄土和25 m厚的马兰黄土;第Ⅳ级阶地面河拔290 m,其通过黄土台塬、黄土丘陵与石质山地相连。Ⅰ—Ⅳ级阶地的基座均为Q_1三门组和Q_2陕县组地层。以最高一级阶地的出现为依据,说明本段黄河形成于晚更新世早中期,较兰州段黄河和晋陕段黄河晚。3)洛河有三级阶地,第Ⅰ级阶地面距河面5~25 m,砾石层上有8~10 m厚的冲洪积、坡积红色松散物;第Ⅱ级阶地面距河面50~65 m,砾石层上有15~20 m的洪积物覆盖;第Ⅲ级阶地面河拔95~115 m,砾石层厚20 m左右,其上覆盖5 m厚的洪积、坡积及5 m厚的马兰黄土。4)在研究颖水河谷平原(登封盆地)河流阶地地貌时,发现塑造盆地的堆积阶地有三级,距河面高程分别是300~320,370~400,450~500 m。在伊洛河下游盆地,有非常发育的河曲,是黄河中下游平原地貌长期发育和演化的产物。5)突破已有看法,认为可把范围在郑州以西、汜水镇以东,荥阳县城以北至黄河河岸的大片地区划分为残塬成因的黄土地形。  相似文献   

11.
Based on the aeolian loess sequence-stratigraphic division and paleomagnetic datings on terraces, we found that an undiscovered terrace with the age of 1.0 Ma BP lies between the Dunwashan terrace and Wuyishan terrace. This terrace recorded an intensive Yellow River incision event during that period. Results of paleomagnetic dating and optically stimulated luminescence (OSL) dating of the Wuyishan loess section and Zaoshugou loess section on the fourth Yellow River terrace (T4) show that the age of the fourth Yellow River terrace in Lanzhou area is 0.86 Ma BP rather than the previously believed 0.6 Ma BP. This result answers a long-term question in the geomorphology community of whether there exists a 0.8 Ma terrace in Lanzhou area. The discovery of the 1.0 Ma Yellow River terrace and redating of the age of 0.6 Ma terrace in Lanzhou area provide new insights into further research on the evolution of Yellow River.  相似文献   

12.
Based on the aeolian loess sequence-stratigraphic division and paleomagnetic datings on terraces, we found that an undiscovered terrace with the age of 1.0 Ma BP lies between the Dunwashan terrace and Wuyishan terrace. This terrace recorded an intensive Yellow River incision event during that period. Results of paleomagnetic dating and optically stimulated luminescence (OSL) dating of the Wuyishan loess section and Zaoshugou loess section on the fourth Yellow River terrace (T4) show that the age of the fourth Yellow River terrace in Lanzhou area is 0.86 Ma BP rather than the previously believed 0. 6 Ma BP. This result answers a long-term question in the ge-omorphology community of whether there exists a 0. 8 Ma terrace in Lanzhou area. The discovery of the 1. 0 Ma Yellow River terrace and redating of the age of 0.6 Ma terrace in Lanzhou area provide new insights into further research on the evolution of Yellow River.  相似文献   

13.
How did the Yellow River develop and evolve? Whendid it form? The geoscientists have concerned these im-portant questions for a long time. They have done a lot ofresearches on these issues and gotten a lot of valuableresults, while there are still many controversies. In general,it mainly includes several points as follows. According tothe transition of the fluviolacustrine strata, biological fos-sils and geologic structure in Lanzhou and Yinchuan, Linmade a conclusion that the Yellow River…  相似文献   

14.
In the east of Xiaolangdi, many river terraces are developed at the exit of the Yellow River Gorges. Among them the terraces in Kouma, Yanshi of Henan Province are most typical, where the Yellow River developed three staircase terraces, among which the altitude of gravel stratum of the topmost terrace is 30-35 m higher than the river level.The top of the gravel stratum was covered by 60 m eolian loess deposits which have many brownish-red paleosol strips.And the paleosol $14 is at its bottom. Research on systematic magnetostratigraphy and paleosol-loess matching indicates that the bottom age of the loess on the topmost terrace is 1165 ka. Therefore, it can be concluded that the terrace develops no later than 1.165 Ma and the situation that the Yellow River runs through Sanmen Gorges and inpours into East China Sea happened at least before 1.165 Ma.  相似文献   

15.
Terrace dating as an archive of the run-through of the Sanmen Gorges   总被引:1,自引:0,他引:1  
Analysis of morphological properties in the Sanmen Gorges region of the Yellow River shows that four river terraces have been developed at the entrance to the gorges. Commonly, thick aeolian loess-paleosol sequence was deposited on the terraces, which makes it easy to date the terraces. The dating of paleomagnetic, loess-paleosol sequence matching and thermoluminescence show that terraces T2, T3 and T4 were formed 0.129 Ma, 0.625 Ma and 0.865 Ma ago, respectively. The formation of these terraces in this region indicates that the Yellow River has experienced four intensive downcutting events during the last 0.9 Ma. The Yellow River cut through the Sanmen Gorges and inpoured into the East China Sea no later than 0.865 Ma.  相似文献   

16.
A study has been made of the paragenetic relations of the pediments and river terraces on the northern piedmont of Wutai Mountains via geomorphologic mapping of 1:10000 scale, and an analysis on the role of tectonic, climatic, and drainage factors in the parageneses. The Quaternary pediments and river terraces on the north piedmont of Wutai Mountains united to constitute six steps of geomorphic surfaces. The episodic uplifting of fault blocks was the dominant factor in the formation of the unified surfaces, however climatic change and drainage diversities led to undulation of the surfaces. The second terrace of Yangyan River (T2) was formed in the last glacial maximum, when the river was in aggradational state. The third to fifth terraces were formed in interglacial stages, when the river was in equilibrium or degradational state. It is inferred that climate had no insignificant effect on the river incision caused by tectonic uplifting. In light of terraces dating, since the Quaternary the Wutai fault-block mountains experienced six rapid uplifting events, and the starting time of the last four events was respectively 1.2, 0.6, 0.13, and 0.02 Ma B.P.  相似文献   

17.
The calcium carbonate coats on stones developed in soil on the geomorphic surfaces of coarse clastic sediments in arid-semiarid regions contain evident information of age. The thickness of coats can be used not only as a good age indicator for the geomorphic surfaces but also coats themselves can be directly used as dating materials in the ESR method. Through measuring the thickness of carbonate coats on stones in soils on the alluvial terraces in the mouth of the Heishanxia gorge of the Yellow River and ESR dating of layers separated from the carbonate coats, the average of accumulation rates of the thickness of carbonate coats on stones since 1.57 Ma was calculated to be 0.10 mm/ka in the studied area, and a regression equation between carbonate coat thickness and age was also generated. From these research results, ages of T2-T11 terraces of the Yellow River in the studied area were systematically determined, and their values are in turn 18 ka, 94 ka, 139 ka, 215 ka, 305 ka, 410 ka, 495 ka, 742 ka, 1072 ka and 1570 ka. The reliability of all these age data is confirmed by the obtained 14C, OSL ages (T2, T3 and T4) and ESR ages of neighbor terraces, and they are completely consistent with the geological epochs estimated by geological and geomorphologic comparison and analysis.  相似文献   

18.
经过对黄河河东地区的实际考察认为三门湖不是在Q2中期全部消亡,而在古湖内的凹陷区,一直延续到Q3末,特点是连续的红泥河湾地层上覆盖着灰黑色湖沼相地层.  相似文献   

19.
The late Cenozoic uplift of Qinghai-Xizang Plateau plays an important role in adjacent geomorphic evolution and depositional environments. Liupan Mountain, located at the northeast margin of Qinghai-Xizang Plateau, has different landforms on the east and west sides. Recently, a pediment, which lies above the highest terrace of the Yellow River at the northeast edge of Longzhong Basin, has been described. The paleomagnetic measurements indicate that the pediment had developed at least 1.8 MaBP and its age is in accordance with that of the peneplains near Lanzhou and Linxia, in the southwest of Longzhong Basin. The results suggest that the Longzhong Basin lying to the west of Liupan Mountain had been subject to erosion and developed an extensive pediment; this pediment is named the Gansu Period Peneplain. It also indicates that Qinghai-Xizang Plateau and Liupan Mountain were uplifted strongly at that time, which caused not only the end of pediplanation but also Yellow River appearance and loess accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号