首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
以三室微生物燃料电池(MFC)为研究对象,采用大肠杆菌(E.coli)作阳极催化剂,比较了在无外加中介体、以中性红(NR)做中介体、以新亚甲基蓝(NMB)做中介体3种情况下的脱氨氮产电性能。结果表明:添加中介体可以提高MFC的开路电压,缩短开路电压达到稳定的时间,以NMB做中介体MFC的开路电压更容易达到稳定值,而以NR做中介体MFC达到的稳定开路电压较前者高。添加中介体能缩短MFC的脱氨氮时间(脱氨氮效率达90%),以NMB做中介体的MFC脱氨氮所需时间更短。以NR做中介体MFC的输出电压更高,但随着时间的延长,以NMB做中介体MFC相比于前者输出电压衰减得慢,稳定性更好。  相似文献   

2.
以生活污水为底物,普通石墨棒为电极,构建立方体型微生物燃料电池(Microbial Fuel Cell,MFC)。研究了阳离子交换膜(Cation Exchange Membrane, CEM)面积和阳极面积对微生物燃料电池产电能力的影响.阳极以厌氧污泥作接种体并且无使用中介体,两室分隔物使用阳离子交换膜(cation exchange membrane,CEM),阴极使用无催化剂的普通碳电极.采用几种不同的阳极面积和阳离子交换膜面积,以最大功率密度和内阻等作为比较参数,比较其产电性能.实验结果表明:(1)当阳离子交换膜面积较小时,功率密度随其增加而增大,内阻则随其增加而减小.但两者的变化幅度均逐渐减小.两者到达极值后,功率密度随其增加而减小,内阻则随其增加而增大.在膜面积为21cm2的时候,电池各项性能指标均达到最佳,其开路电压(OCV)为233mV,最大功率密度为3.44mW?m-2,电池内阻为2.10 KΩ.(2)MFC产能除了与膜面积相关外,受阳极面积的限制也很大,要得到最大的能量输出,膜面积应该略大于阳极面积.最佳产能时离子交换膜与阳极的面积比为1.37.  相似文献   

3.
微生物燃料电池启动过程的电化学行为   总被引:1,自引:0,他引:1  
构建了以初沉池污水接种、铁氰化钾作为阴极液的典型H型无介体微生物燃料电池(MFC),考察了MFC在启动过程中的电化学行为。结果表明:在启动期间,MFC开路电压比闭路电压提前达到稳定,电池内阻的变化决定了MFC的启动过程。铁氰化钾阴极电位的变化幅度较小,阳极电位的降低幅度远大于阴极电位,启动过程电压的变化由阳极电位主导。启动中的电化学阻抗谱(EIS)分析表明,电池电荷转移内阻随着启动过程的进行呈现不断下降的趋势,反映了MFC阳极产电微生物的繁殖与驯化过程。  相似文献   

4.
为了进一步提高微生物燃料电池的运行性能,提高硝酸盐降解率及改善电能输出情况,以城镇污水处理厂二沉池污泥为接种源,硝酸钠为电子受体运行典型单室空气阴极微生物燃料电池(MFC)。以1g/L无水乙酸钠、50 mmol/L磷酸盐缓冲液为模拟废水成功启动MFC,运行稳定后,通过碳源、碳氮比(C/N)、硝酸盐浓度、温度4个因素来优化MFC运行性能。实验结果表明:在温度为30℃、无水乙酸钠为碳源、C/N=5∶1、硝酸盐质量浓度为200mg/L时MFC运行性能最佳,硝酸盐去除率均可达到90%以上,最大电压可达到0.462V。最佳状态下经6个周期运行,MFC最高电压为0.62V,功率密度高达4.53 W/m2;交流阻抗分析最佳运行状态下MFC内阻为130Ω,扫描电镜观察到电极表面微生物种类及数量均明显增多。研究证明MFC可以作为含硝酸盐废水产能净化的有效技术。  相似文献   

5.
利用配制的氯化锂溶液作为工作介质,通过实验研究稀溶液和浓溶液浓度变化对逆向电渗析电池组(REDCs)开路电压、内阻以及功率密度等电池特性参数的影响.研究结果表明,由10个电池单元构成的REDCs在所研究的浓度范围内,最大开路电压为1.88V,最大功率密度为1.67 W/m~2.电池的开路电压随稀溶液浓度增大而降低,而随浓溶液浓度增大出现先增后降的趋势.电池内阻随浓、稀溶液的浓度增大而降低.电池的端电压与功率密度受电流影响.随电流增大,端电压呈线性下降的趋势,而功率密度变化却呈上凸的二次曲线.当电路总电阻为电池内阻两倍时,电池功率密度达到最大值.  相似文献   

6.
在相同的基质浓度(COD=1 500 mg/L)下,分别向反应器中加入0、50、100、200、300和400 mmol/L的氯化钠(Na Cl)溶液,考察了不同Na Cl浓度对双室微生物燃料电池(MFC)的电动势、内阻、输出功率和库伦效率的影响。随着Na Cl投加量的增加,内阻显著降低,输出功率的密度相应增加,但浓度过高会导致微生物细胞失水死亡,对MFC产生破坏性影响。当离子强度的浓度为200 mmol/L时,电池产电性能最优,最大开路电压为1 138 m V,内阻为205.8Ω,最大输出功率的密度为230.35 m W/m2,COD去除效率达到90.35%,库伦效率达到30.89%。  相似文献   

7.
以碳布为阴阳极材料,乙酸钠为底物,MnO_2@graphene为阴极催化剂构建空气阴极单室微生物燃料电池(MFC),研究了阳极液pH、阳极底物初始COD浓度、MFC运行温度等因素对MFC输出电压和产电功率的影响﹒研究结果表明,阳极液pH对MFC产电性能影响最大,而阳极底物初始COD浓度影响最小﹒在阳极液pH为8、MFC运行温度为308 K和阳极底物初始COD浓度为800 mg/L时MFC的产电性能和污水处理最佳﹒在此条件下,MFC对污水中COD的降解率可达98.4%,输出电压和产电功率密度分别可达0.813 V和2 046.9mW/m~2,说明以MnO_2@graphene为阴极催化剂的MFC具有较好的产电性能和污水处理效能﹒  相似文献   

8.
以含油污泥为阳极底物构筑了沉积型微生物燃料电池(SMFC),通过检测输出电压、功率密度、表观内阻和原油去除效果等性能指标,分别考察了阳极填料、电极面积、pH对SMFC的性能影响.结果表明:相比活性炭填料,碳毡填料使SMFC发电性能更优且原油去除率提高了8.03%;增加电极面积,SMFC内阻减小、发电性能和原油去除率得到提升;酸性或碱性阳极底物不利于SMFC发电和降解油污,而阳极底物的pH=7.5时,SMFC的发电及油污降解性能最佳,输出电压和原油去除率分别达373.7 mV、45.36%.  相似文献   

9.
以Geobacter sulfurreducens为产电菌构建双室微生物燃料电池(MFC)。产电菌液分别在0、100、200mT的垂直磁场下动态处理1h,然后接种到MFC1、MFC2和MFC3中,研究动态磁场处理对MFC产电性能的影响。实验结果表明:动态磁场处理使产电菌反应器的启动时间延长、稳定电压降低、表观内阻增大,MFC1、MFC2和MFC3的表观内阻依次为329、507、353Ω;通过电化学阻抗谱测试可知,相比对照组MFC活化内阻,经磁场处理的产电菌MFC全电池的活化内阻变大,其中MFC1、MFC2和MFC3的活化内阻依次为12.34、28.29、16.87Ω;循环伏安测试发现经过动态磁场处理的产电菌其电化学活性降低。  相似文献   

10.
为研究微生物燃料电池(microbial fuel cell, MFC)对含As(Ⅲ)废水的解毒效果和产电能力,以As(Ⅲ)和乙酸钠为阳极底物,对不同As(Ⅲ)初始浓度下MFC的产电性能、As(Ⅲ)氧化情况及其微生物群落进行分析.结果表明,该MFC可有效氧化As(Ⅲ)以降低毒性,同时产生稳定电压,其最大功率密度为1.368 6 W·m~(-3), As(Ⅲ)去除率达75.0%,变形菌、长绳菌、不动杆菌等为该MFC上的优势种群.  相似文献   

11.
降解苯的微生物燃料电池产电性能研究   总被引:2,自引:0,他引:2  
 通过构建填料型微生物燃料电池(microbial fuel cell,MFC),对葡萄糖、苯为单一燃料和葡萄糖+苯混合燃料条件下MFC的产电性能及苯的降解效果进行了研究。试验结果表明,1 000 Ω外电阻条件下,以1 500 mg/L葡萄糖作为单一燃料时,MFC可获得的最高功率密度为228 mW/m2(阳极),相应的体积功率密度为205 W/m3(按阳极室有效体积计算); 以1 000 mg/L苯作为单一燃料时,最高功率密度为95 mW/m2(阳极),体积功率密度为09 W/m3;以1 000 mg/L葡萄糖+600 mg/L苯为混合燃料时,最高功率密度为288 mW/m2 (阳极),相应的体积功率密度为259 W/m3。1 000 mg/L葡萄糖+600 mg/L苯混合燃料情况下,MFC在24 h内可将苯完全降解,产电周期结束时MFC的 COD去除率在95%以上。以1 500 mg/L葡萄糖和1 000 mg/L葡萄糖+600 mg/L苯分别作为燃料时,MFC可获得的库仑〖JP2〗效率分别为157%和23%。结果表明,MFC能够利用苯作为燃料,在实现高效降解的同时可稳定地向外输出电能,这为苯类难降解有机物的高效低耗处理提供了新的研究思路。  相似文献   

12.
微生物燃料电池同步还原五价钒并产电   总被引:1,自引:0,他引:1  
五价钒(V(Ⅴ))具有较强的毒性,在环境中广泛存在。本文采用双室微生物燃料电池,以人工模拟的含钒废水作为阴极电子受体,实现了V(Ⅴ)的同步还原与产电。同时发现:较高的初始V(Ⅴ)质量浓度能够提高微生物燃料电池的输出功率密度,但不利于V(Ⅴ)的去除;降低pH对功率密度和V(Ⅴ)的去除率都有利,但当pH低至2时,再减小pH,上述两指标没有显著提高。V(Ⅴ)在微生物燃料电池中被还原为V(Ⅳ),后者可以通过调整pH而沉淀,从而实现了含钒废水的有效处理并回收电能与钒元素。  相似文献   

13.
永磁直线波力发电机的磁场分析与参数计算   总被引:4,自引:0,他引:4  
为了直接把海洋的波浪能转换为电能,提出了一种永磁直线波力发电机。设计了电机的结构。以一个定子模块数为3,振子永磁体磁极数为5的直线发电机为例,采用电磁场有限元方法分析了电机磁场和空载感应电动势,求解发电机定子绕组的电感参数,计算了发电机的功角特性曲面。对感应电动势的实验结果与计算结果进行比较,相对误差为6.8%。该型永磁直线波力发电机在振子速度为0.9m/s时最大输出功率可达80W,能够有效利用海洋波浪能发电。  相似文献   

14.
讨论了用伏特计代替电位差计测电源的电动势和内阻的新方法.将伏特计法和电位差计法测量电源电动势和内阻的结果进行了对比,结果表明。两者的测量结果十分相近.  相似文献   

15.
研究了三级液固厌氧流化床微生物燃料电池(MFC)串并联的产电性能.同时考察了活性炭装填高度、阳极面积等因素对燃料电池产电性能的影响.结果表明:将燃料电池串联时,总电压为1 500 mV,等于3个单级电池的电压之和,能够有效地提高燃料电池的输出电压,最大功率密度为0.28 W·m-2.而并联时,输出电压仅为450 mV左右,和单级电池输出电压大体相当,最大功率密度为0.074 W·m-2.活性炭的装填高度增加1倍,电压升高了20%左右.阳极面积增加1倍,产电量增大了30%.  相似文献   

16.
通过对非静电力和电动势的讨论,从而说明在不同电路中,电动势所代表的意义不同,所起的作用不同.  相似文献   

17.
电源电动势和内阻的常用测量方法是伏安法和电位差计法.针对这2种方法存在测量结果误差大或实验步骤繁琐等问题,提出了基于自组补偿电路法的电源电动势和内阻测量方法.该方法实验原理清晰,不需使用专门设备,测量步骤较简单,测量结果较精确.  相似文献   

18.
基于钛网基膜电极组件(membrane electrode assembly,MEA)设计并制作被动式直接甲醇燃料电池(directmethanol fuel cell,DMFC).钛网基MEA以钛金属网作为电极支撑体基底材料,Nafionll7作为质子交换膜.PtRU/XC-72R作为阳极催化剂,Pt/XC-72R作为阴极催化剂.被动式DMFC壳体采用有机玻璃材料制作.密封元件采用硅胶片制作.紧固件选用标准件.在室温空气自呼吸条件下,选取不同甲醇浓度的电解液.测试了基于钛网基MEA的被动式DMFC极化性能.结果表明:当电解液中甲醇浓度从0.5mol/L经过1.0mol/L增大到1.5mol/L时.基于钛网基MEA的被动式DMFC的功率密度峰值呈现先增大、后减小的规律;当甲醇浓度为1.0mol/L。电池功率密度峰值为3.91mW/cm2.  相似文献   

19.
 分别用恒电压法、脉冲极化法、循环伏安法制备聚苯胺(PANI)膜阳极,并应用于固定床微生物燃料电池(MFC),考察其产电及污水处理性能。结果表明,与恒电压法和脉冲极化法相比,循环伏安法制备的PANI 膜阳极导电性最好,且其电极电阻(3.65 Ω)与恒电压法制备的电极电阻(55.45 Ω)相比降低了51.8 Ω。循环伏安法制备的PANI 膜阳极应用于MFC,最大功率密度和开路电压分别为215.6 mW·m-2和849.3 mV,比恒电压法制备的PANI 膜阳极MFC 最大功率密度和开路电压分别提高了50.6%和45.1%。与恒电压法和脉冲极化法相比,循环伏安法制备的PANI 膜阳极,可一定程度上缩短MFC 启动时间,增加电池产电稳定性,提高MFC 对污水有机物的去除率,为MFC 高性能阳极的制备提供了一种新途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号