首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
The 0.1 mol% Er3 and 0―2 mol% Yb3 codoped Al2O3 powders were prepared by the sol-gel method,and the phase structure,including only two crystalline types of doped Al2O3 phase,γ-(Al,Er,Yb)2O3 and θ-(Al,Er,Yb)2O3,was detected at the sintering temperature of 1000℃. The visible and near infrared emissions properties depended strongly on the Yb3 codoping,and the corresponding maximal peak intensities centered at about 523,545,660 and 1533 nm were obtained respectively for the 0.1 mol% Er3 and 0.5 mol% Yb3 codoped Al2O3 powders,which were composed of θ-(Al,Er,Yb)2O3 and a small amount of γ-(Al,Er,Yb)2O3 phases. The two-photon absorption process was responsible for the visible up-conversion emissions,and the one-photon absorption process was involved in the near infrared emissions of the Er3 -Yb3 codoped Al2O3 powders.  相似文献   

2.
The 0.1 mol% Er^3+ and 0-2 mol% Yb^3+ codoped Al2O3 powders were prepared by the sol-gel method, and the phase structure, including only two crystalline types of doped Al2O3 phase, γ-(Al,Er, Yb)2O3 and θ-(Al,Er, Yb)2O3, was detected at the sintering temperature of 1000℃. The visible and near infrared emissions properties depended strongly on the Yb^3+ codoping, and the corresponding maximal peak intensities centered at about 523, 545, 660 and 1533 nm were obtained respectively for the 0.1 mol% Er^3+ and 0.5 mol% Yb^3+ codoped Al2O3 powders, which were composed of θ-(Al,Er,Yb)2O3 and a small amount of γ-(Al,Er, Yb)2O3 phases. The two-photon absorption process was responsible for the visible up-conversion emissions, and the one-photon absorption process was involved in the near infrared emissions of the Er^3+-yb^3+ codoped Al2O3 powders.  相似文献   

3.
The synthesis and up-conversion luminescent properties of YTaO4:Er^3+ and YTaO4:Er^3+/Yb^3+ are reported for the first time. According to the measurement results of up-conversion spectra, Yb^3+ co-doping can remarkably enhance the green (^2H11/2/^4S3/2→^4I15/2) and red (^4F9/2→^4I15/2) emissions, but depress the infrared emission (^4I9/2→^4I15/2). With the increase of the Yb^3+ concentration, the intensity of green emission increases, after that, when the Yb^3+ concentration increases continuously, the intensity of green emission decreases, while those of the red and infrared emissions increase and decrease alternately. In addition, the up-conversion mechanisms of Er^3+ doped and Er^3+/Yb^3+ co-doped YTaO4 are also discussed. It is found that the transform of up-conversion mechanism from two-step energy transfer to cooperating sensitization takes place when Yb^3+ concentration is increased up to 12 mol%. With the further increase of Yb^3+ concentration, the energy-back-transfer gradually becomes the dominant up-conversion mechanism, which results in the quenching of the green emission and slight increasing of the red and infrared emissions.  相似文献   

4.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

5.
In situ(α-Al_2O_3+ZrB_2)/Al composites with network distribution were fabricated using low-energy ball milling and reaction hot pressing. Differential thermal analysis(DTA) was used to study the reaction mechanisms in the Al–Zr O2–B system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) in conjunction with energy-dispersive X-ray spectroscopy(EDX) were used to investigate the composite phases, morphology, and microstructure of the composites. The effect of matrix network size on the microstructure and mechanical properties was investigated. The results show that the optimum sintering parameters to complete reactions in the Al–Zr O2–B system are 850°C and 60 min. In situ-synthesized α-Al2O3 and Zr B2 particles are dispersed uniformly around Al particles, forming a network microstructure; the diameters of the α-Al2O3 and Zr B2 particles are approximately 1–3 μm. When the size of Al powder increases from 60–110 μm to 150–300 μm, the overall surface contact between Al powders and reactants decreases, thereby increasing the local volume fraction of reinforcements from 12% to 21%. This increase of the local volume leads to a significant increase in microhardness of the in situ(α-Al2O3–Zr B2)/Al composites from Hv 163 to Hv 251.  相似文献   

6.
A novel process termed low-temperature combustion-synthesis (LCS) of Ba(NO3)-TiO-C6H8O7H2O system was investigated at the initial temperature of 600℃ and ultrafine BaTiO3 powders with a particle size of 200€?350nm were prepared. It was found that the molar ratio of NO/citric acid and the homogeneity of combustion have remarkable effect on the characteristics of the powder. The reaction mechanism of LCS BaTiO3 powders was proposed on the basis of thermodynamic analysis.  相似文献   

7.
γ-Fe2O3 nanoparticles were successfully synthesized by a chemically induced transformation of α-FeOOH.In this method,the precursor(α-FeOOH)was prepared by chemical precipitation,and then treated with a mixed FeCl2/NaOH solution to produce the nanoparticles.X-ray diffraction indicated that when the precursor was treated with FeCl2(0.22 mol/L)and NaOH(0.19 mol/L),pure γ-Fe2O3 nanoparticles were obtained.However,when the concentration of FeCl2 was<0.22 mol/L or the concentration of NaOH was<0.19 mol/L,α-FeOOH and γ-Fe2O3 phases co-existed in the nanoparticles.Transmission electron microscopy observations showed that in the samples with co-existing phases,the nanoparticles did not have identical morphologies.The pure γ-Fe2O3 nanoparticles were polygonal rather than spherical.The volume ratio of α-FeOOH and γ-Fe2O3 was estimated for the two-phase samples from magnetization data obtained from a vibrating sample magnetometer.This chemically induced transformation is novel,and could provide an effective route for the synthesis of other metal oxide nanocrystallites.  相似文献   

8.
Oxide eutectic ceramic in situ composites have attracted significant interest in the application of high-temperature structural materials because of their excellent high-temperature strength,oxidation and creep resistance,as well as outstanding microstructural stability.The directionally solidified ternary Al2O3/YAG/ZrO2 hypereutectic in situ composite was successfully prepared by a laser zone remelting method,aiming to investigate the growth characteristic under ultra-high temperature gradient.The microstructures and phase composition of the as-solidified hypereutectic were characterized by using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).The results show that the composite presents a typical hypereutectic lamellar microstructure consisting of fine Al2O3 and YAG phases,and the enriched ZrO2 phases with smaller sizes are randomly distributed at the Al2O3/YAG interface and in Al2O3 phases.Laser power and scanning rate strongly affect the sample quality and microstructure characteristic.Additionally,coarse colony microstructures were also observed,and their formation and the effect of temperature gradient on the microstructure were discussed.  相似文献   

9.
《矿物冶金与材料学报》2021,28(12):1983-1990
Radioluminescence (RL) behaviour of erbium-doped yttria nanoparticles (Y2O3:Er3+ NPs) which were produced by sol–gel method was reported for future scintillator applications. NPs with dopant rates of 1at%, 5at%, 10at% and 20at% Er were produced and calcined at 800°C, and effect of increased calcination temperature (1100°C) on the RL behaviour was also reported. X-ray diffraction (XRD) results showed that all phosphors had the cubic Y2O3 bixbyite-type structure. The lattice parameters, crystallite sizes (CS), and lattice strain values were calculated by Cohen-Wagner (C-W) and Williamson-Hall (W-H) methods, respectively. Additionally, the optimum solubility value of the Er3+ dopant ion in the Y2O3 host lattice was calculated to be approximately 4at% according to Vegard’s law, which was experimentally obtained from the 5at% Er3+ ion containing solution. Both peak shifts in XRD patterns and X-ray photoelectron spectroscopy (XPS) analyses confirmed that Er3+ dopant ions were successfully incorporated into the Y2O3 host structure. High-resolution transmission electron microscopy (HRTEM) results verified the average CS values and agglomerated NPs morphologies were revealed. Scanning electron microscopy (SEM) results showed the neck formation between the particles due to increased calcination temperature. As a result of the RL measurements under a Cu Kα X-ray radiation (wavelength, λ = 0.154 nm) source with 50 kV and 10 mA beam current, it was determined that the highest RL emission belonged to 5at% Er doped sample. In the RL emission spectrum, the emission peaks were observed in the wavelength ranges of 510–575 nm (2H11/2, 4S3/2–4I15/2; green emission) and 645–690 nm (4F9/2–4I15/2; red emission). The emission peaks at 581, 583, 587, 593, 601, 611 and 632 nm wavelengths were also detected. It was found that both dopant rate and calcination temperature affected the RL emission intensity. The color shifted from red to green with increasing calcination temperature which was attributed to the increased crystallinity and reduced crystal defects.  相似文献   

10.
The oxidation behavior of three high-strength FeCrAl alloys was investigated in supercritical carbon dioxide environment at 650 ℃. After exposure for 500 h, the weight gains of the FeCrAl alloys gradually decreased with increasing Al content. The oxide scales are primarily composed of α-Al_2O_3 and spinel oxides. With increasing Al content, the amount of α-Al_2O_3 increases and the C content decreased in the oxide scale and sub-scale matrix.Moreover, larger(Nb,Mo)C carbides formed in the sub-scale matrix and their number decreased with the increase of Al content.  相似文献   

11.
YVO4:Er3+, Yb3+ with varying Yb3+ concentrations were prepared by a precipitation method. The results of X-ray diffraction (XRD) show that all the samples have a tetragonal zircon structure; the calculated average crystallite sizes are in the range of 14–22 nm. The lattice constants and cell volume of the samples decrease slightly with the increase in Yb3+ concentration. The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation. The strong green emission is observed, which is attributed to the 2H11/24I15/2 and 4S3/24I15/2 transitions of Er3+, and the red emission peaks in 650–675 nm can be ignored. The emission intensity for the sample depends on the Yb3+ concentration. These results reveal that the upconversion processes of YVO4:Er3+, Yb3+ are related to the structure and the doping Yb3+ concentration of the sample.  相似文献   

12.
The superconductive Josephson junction is the key device for superconducting quantum computation. We have fabricated Al/Al2O3/Al tunnel junctions using a double angle evaporation method based on a suspended shadow mask. The Al2O3 junction barrier has been formed by introducing pure oxygen into the chamber during the fabrication process. We have adjusted exposure conditions by changing either the oxygen pressure or the oxidizing time during the formation of tunnel barriers to control the critical current density Jc and the junction specific resistance Rc. Measurements of the leakage in Al/Al2O3/Al tunnel junctions show that the devices are suitable for qubit applications.  相似文献   

13.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

14.
A single host white emitting phosphor, CaLaGa3O7:Dy3+, was synthesized by chemical co-precipitation. Field emission scanning electron microscopy, X-ray diffraction, laser particle size analysis, and photoluminescence and cathodoluminescence spectra were used to investigate the structural and optical properties of the phosphor. The phosphor particles were composed of microspheres with a slight tendency to agglomerate, and an average diameter was of about 1.0 μm. The Dy3+ ions acted as luminescent centers, and substituted La3+ ions in the single crystal lattice of CaLaGa3O7 where they were located in Cs sites. Under excitation with ultraviolet light and a low voltage electron beam, the CaLaGa3O7:Dy3+ phosphor exhibited the characteristic emission of Dy3+ (4F9/2-6H15/2 and 4F9/2-6H13/2 transitions) with intense yellow emission at about 573 nm. The chromaticity coordinates for the phosphor were in the white region. The relevant luminescence mechanisms of the phosphor are investigated. This phosphor may be applied in both field emission displays and white light-emitting diodes.  相似文献   

15.
The CaLaGa3O7:Eu3+ phosphor was prepared by a chemical co-precipitation method. Field emission scanning electron microscopy (FE-SEM), laser particle size analysis, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphor. The results revealed that the phosphor was composed of microspheres with a slight agglomerate phenomenon and was spherically shaped. The average grain size was about 1.0 μm. Eu3+ ions, as luminescent centers, substituted La3+ ions into the single crystal lattice of CaLaGa3O7 with the sites of Cs. Although the CL spectrum was greatly different from the PL spectrum, it had the strongest red emission corresponding to the 5D07F2 transition of Eu3+. Under the excitation of UV light (287 nm) and electron beams (1.0–7.0 kV), the chromaticity coordinates of the phosphor were found to be in the nearly red and orange light regions, respectively.  相似文献   

16.
A series of rare earth ions doped CdSiO3:RE^3 (RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,Er, Tin, Yb, Lu) multi-color long-lasting phosphorescence phosphors are prepared by the conventional hightemperature solid-state method. The results of XRD measurement indicate that the products fired under 1050~C for 3h have a good crystallization without any detectable amount of impurity phase. Rare earth ions doped CdSiO3 phosphors possess excellent Inmiuescence properties. When rare earth ions such as Y^3 , La^3 , Gd^3 , Lu^3 , Ce^3 , Nd^3 , Ho^3 , Er^3 ,Tm^3 and Yb^3 are introduced into the CdSiO3 host, one broadband centered at about 420 nm resulting from traps can be observed. In the case of other earth ions such as Pr^3 ,Sm^3 , Eu^3 , Tb^3 and Dy^3 , their characteristic line emitting as well as the -420 nm broadband luminescence can be obtained. The mixture of their characteristic line emitting with the -420 nm broadband Inminescence results in various afterglow color.  相似文献   

17.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号