首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melting above the anhydrous solidus controls the location of volcanic arcs   总被引:1,自引:0,他引:1  
England PC  Katz RF 《Nature》2010,467(7316):700-703
Segregation of magma from the mantle in subduction zones is one of the principal mechanisms for chemical differentiation of the Earth. Fundamental aspects of this system, in particular the processes by which melt forms and travels to the Earth's surface, remain obscure. Systematics in the location of volcanic arcs, the surface expression of this melting, are widely considered to be a clue to processes taking place at depth, but many mutually incompatible interpretations of this clue exist (for example, see refs 1-6). We discriminate between those interpretations by the use of a simple scaling argument derived from a realistic mathematical model of heat transfer in subduction zones. The locations of the arcs cannot be explained by the release of fluids in reactions taking place near the top of the slab. Instead, the sharpness of the volcanic fronts, together with the systematics of their locations, requires that arcs must be located above the place where the boundary defined by the anhydrous solidus makes its closest approach to the trench. We show that heat carried by magma rising from this region is sufficient to modify the thermal structure of the wedge and determine the pathway through which both wet and dry melts reach the surface.  相似文献   

2.
An overview of adakite petrogenesis   总被引:79,自引:0,他引:79  
ADAKITE IS A PETROLOGIC TERM THAT DEFANT AND DRUM-MOND[1] FIRST INTRODUCED ~ 15 YEARS AGO TO REFER TO “VOL- CANIC OR INTRUSIVE ROCKS IN CENOZOIC ARCS ASSOCIATED WITH SUBDUCTION OF YOUNG (≤25 MA) OCEANIC LITHO- SPHERE”; THESE ROCKS ARE “CHARACTERIZED B…  相似文献   

3.
Two metamorphic processes, i.e. subsolidus dehydration and partial melting occurring in MORB, metasediments and peridotite of subducted oceanic lithosphere are discussed on the basis of available experimental work and phase equilibrium modeling. Phase diagrams of hydrous MORB show that in most cold subduction P-T (pressure-temperature) regimes a large portion of water in the basic layer has released below the onset of blueschist facies (〈 20 km), and at a depth (60--70 km) of transition from lawsonite blueschist to lawsonite eclogite facies through glaucophane dehydration; only a smaller portion of water will escape from the slab through dehydration of lawsonite and chloritoid in the depth range suitable for arc magma formation; and a very small portion of water stored in lawsonite and phengite will fade into the deeper mantle. The role of amphibole for arc magma formation is still arguable. In cold subduction P-Tregimes, the dehydration of chlorite and talc in AI-poor metasediments, and chloritoid and carpholite in AI-rich metapelites at a depth around 80--100 km will make some con- tributions to the formation of arc magma. Comparatively, dehydration of serpentine in hydrated peri- dotite occurs at depths of 120--180 km, playing an important role in the arc magmatism. Subduction of oceanic crust along warm P-T regimes will cross the solidi at a depth over 80 km, resulting in partial melting under fluid-saturated and fluid-absent conditions in the metasediments involving biotite and phengite, and in the basic rocks involving epidote and amphibole. The melt compositions of the basic crust are adakitic at pressures 〈 3.0 GPa, but become peraluminous granitic at higher pressures.  相似文献   

4.
太平洋板块边界和内部均发育大量火山,是研究地球火山的天然实验场。综述了太平洋火山特征与深部成因机制,表明研究人员对地球不同环境下的火山(包括大洋中脊、俯冲带岛弧、板内地幔柱等)进行了系统性研究,分别构建了减压熔融、俯冲板片脱水与富水地幔楔熔融、地幔柱高温熔融的经典模式。但目前学界对于板内非地幔柱型火山的深部岩浆起源以及浅部喷发通道等重要科学问题仍缺乏清晰的认识。未来需要采用创新观测手段,开展多学科交叉研究以取得突破。  相似文献   

5.
Adakites and Nb-enriched arc basaltic rocks (NEABs) in arc setting, which are closely correlated in petrogenesis, have recently been widely followed with interest[1—9]. In general, adakite is derived from partial melting of subducting oceanic crust[1]. When adakitic magma (slab melt) passes through the mantle wedge, the interactions between slab melt and mantle peridotite will occur: slab melt is contaminated by peridotite, meanwhile peridotite is metasomated by slab melt. The NEABs are d…  相似文献   

6.
Ranero CR  Morgan JP  McIntosh K  Reichert C 《Nature》2003,425(6956):367-373
The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.  相似文献   

7.
Morris JD  Leeman WP  Tera F 《Nature》1990,344(6261):31-36
Although high concentrations of beryllium-10 and boron are taken as unequivocal indicators of the contribution of subducting plates, controversy persists about the processes by which material is transferred from slabs to the sources of arc magmas. Data on (10)Be/Be and B/Be ratios from four arcs suggest that the contribution from the slab is compositionally homogeneous in each arc and that subducted boron is not stored in the sub-arc mantle. The link between subduction and magma-tism at convergent margins seems to be well regulated.  相似文献   

8.
Booker JR  Favetto A  Pomposiello MC 《Nature》2004,429(6990):399-403
Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30 degrees (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28 degrees and 33 degrees S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.  相似文献   

9.
The redox state of arc mantle using Zn/Fe systematics   总被引:5,自引:0,他引:5  
Lee CT  Luffi P  Le Roux V  Dasgupta R  Albaréde F  Leeman WP 《Nature》2010,468(7324):681-685
Many arc lavas are more oxidized than mid-ocean-ridge basalts and subduction introduces oxidized components into the mantle. As a consequence, the sub-arc mantle wedge is widely believed to be oxidized. The Fe oxidation state of sub-arc mantle is, however, difficult to determine directly, and debate persists as to whether this oxidation is intrinsic to the mantle source. Here we show that Zn/Fe(T) (where Fe(T) = Fe(2+)?+?Fe(3+)) is redox-sensitive and retains a memory of the valence state of Fe in primary arc basalts and their mantle sources. During melting of mantle peridotite, Fe(2+) and Zn behave similarly, but because Fe(3+) is more incompatible than Fe(2+), melts generated in oxidized environments have low Zn/Fe(T). Primitive arc magmas have identical Zn/Fe(T) to mid-ocean-ridge basalts, suggesting that primary mantle melts in arcs and ridges have similar Fe oxidation states. The constancy of Zn/Fe(T) during early differentiation involving olivine requires that Fe(3+)/Fe(T) remains low in the magma. Only after progressive fractionation does Fe(3+)/Fe(T) increase and stabilize magnetite as a fractionating phase. These results suggest that subduction of oxidized crustal material may not significantly alter the redox state of the mantle wedge. Thus, the higher oxidation states of arc lavas must be in part a consequence of shallow-level differentiation processes, though such processes remain poorly understood.  相似文献   

10.
Mantle wedge control on back-arc crustal accretion   总被引:1,自引:0,他引:1  
Martinez F  Taylor B 《Nature》2002,416(6879):417-420
At mid-ocean ridges, plate separation leads to upward advection and pressure-release partial melting of fertile mantle material; the melt is then extracted to the spreading centre and the residual depleted mantle flows horizontally away. In back-arc basins, the subducting slab is an important control on the pattern of mantle advection and melt extraction, as well as on compositional and fluid gradients. Modelling studies predict significant mantle wedge effects on back-arc spreading processes. Here we show that various spreading centres in the Lau back-arc basin exhibit enhanced, diminished or normal magma supply, which correlates with distance from the arc volcanic front but not with spreading rate. To explain this correlation we propose that depleted upper-mantle material, generated by melt extraction in the mantle wedge, is overturned and re-introduced beneath the back-arc basin by subduction-induced corner flow. The spreading centres experience enhanced melt delivery near the volcanic front, diminished melting within the overturned depleted mantle farther from the corner and normal melting conditions in undepleted mantle farther away. Our model explains fundamental differences in crustal accretion variables between back-arc and mid-ocean settings.  相似文献   

11.
Kneller EA  van Keken PE 《Nature》2007,450(7173):1222-1225
Shear-wave splitting measurements above the mantle wedge of the Mariana and southern Andean subduction zones show trench-parallel seismically fast directions close to the trench and abrupt rotations to trench-perpendicular anisotropy in the back arc. These patterns of seismic anisotropy may be caused by three-dimensional flow associated with along-strike variations in slab geometry. The Mariana and Andean subduction systems are associated with the largest along-strike variations of slab geometry observed on Earth and are ideal for testing the link between slab geometry and solid-state creep processes in the mantle. Here we show, with fully three-dimensional non-newtonian subduction zone models, that the strong curvature of the Mariana slab and the transition to shallow slab dip in the Southern Andes give rise to strong trench-parallel stretching in the warm-arc and warm-back-arc mantle and to abrupt rotations in stretching directions that are accompanied by strong trench-parallel stretching. These models show that the patterns of shear-wave splitting observed in the Mariana and southern Andean systems may be caused by significant three-dimensional flow induced by along-strike variations in slab geometry.  相似文献   

12.
Scaillet B  Pichavant M 《Nature》2004,430(6999):1 p following 523; discussion 2 p following 523
Assessing the conditions under which magmas become fluid-saturated has important bearings on the geochemical modelling of magmas because volatile exsolution may profoundly alter the behaviour of certain trace elements that are strongly partitioned in the coexisting fluid. Saal et al. report primitive melt inclusions from dredged oceanic basalts of the Siqueiros transform fault, from which they derive volatile abundances of the depleted mantle, based on the demonstration that magmas are not fluid-saturated at their eruption depth and so preserve the mantle signature in terms of their volatile contents. However, in their analysis, Saal et al. consider only fluid-melt equilibria, and do not take into account the homogeneous equilibria between fluid species, which, as we show here, may lead to a significant underestimation of the pressure depth of fluid saturation.  相似文献   

13.
Stability of hydrous melt at the base of the Earth's upper mantle   总被引:3,自引:0,他引:3  
Sakamaki T  Suzuki A  Ohtani E 《Nature》2006,439(7073):192-194
Seismological observations have revealed the existence of low-velocity and high-attenuation zones above the discontinuity at 410 km depth, at the base of the Earth's upper mantle. It has been suggested that a small amount of melt could be responsible for such anomalies. The density of silicate melt under dry conditions has been measured at high pressure and found to be denser than the surrounding solid, thereby allowing the melt to remain at depth. But no experimental investigation of the density of hydrous melt has yet been carried out. Here we present data constraining the density of hydrous basaltic melt under pressure to examine the stability of melt above the 410-km discontinuity. We infer that hydrous magma formed by partial melting above the 410-km discontinuity may indeed be gravitationally stable, thereby supporting the idea that low-velocity or high-attentuation regions just above the mantle transition zone may result from the presence of melt.  相似文献   

14.
Kessel R  Schmidt MW  Ulmer P  Pettke T 《Nature》2005,437(7059):724-727
Fluids and melts liberated from subducting oceanic crust recycle lithophile elements back into the mantle wedge, facilitate melting and ultimately lead to prolific subduction-zone arc volcanism. The nature and composition of the mobile phases generated in the subducting slab at high pressures have, however, remained largely unknown. Here we report direct LA-ICPMS measurements of the composition of fluids and melts equilibrated with a basaltic eclogite at pressures equivalent to depths in the Earth of 120-180 km and temperatures of 700-1,200 degrees C. The resultant liquid/mineral partition coefficients constrain the recycling rates of key elements. The dichotomy of dehydration versus melting at 120 km depth is expressed through contrasting behaviour of many trace elements (U/Th, Sr, Ba, Be and the light rare-earth elements). At pressures equivalent to 180 km depth, however, a supercritical liquid with melt-like solubilities for the investigated trace elements is observed, even at low temperatures. This mobilizes most of the key trace elements (except the heavy rare-earth elements, Y and Sc) and thus limits fluid-phase transfer of geochemical signatures in subduction zones to pressures less than 6 GPa.  相似文献   

15.
Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed 'adakites, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.  相似文献   

16.
Growth of early continental crust by partial melting of eclogite   总被引:26,自引:0,他引:26  
Rapp RP  Shimizu N  Norman MD 《Nature》2003,425(6958):605-609
The tectonic setting in which the first continental crust formed, and the extent to which modern processes of arc magmatism at convergent plate margins were operative on the early Earth, are matters of debate. Geochemical studies have shown that felsic rocks in both Archaean high-grade metamorphic ('grey gneiss') and low-grade granite-greenstone terranes are comprised dominantly of sodium-rich granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite of rocks. Here we present direct experimental evidence showing that partial melting of hydrous basalt in the eclogite facies produces granitoid liquids with major- and trace-element compositions equivalent to Archaean TTG, including the low Nb/Ta and high Zr/Sm ratios of 'average' Archaean TTG, but from a source with initially subchondritic Nb/Ta. In modern environments, basalts with low Nb/Ta form by partial melting of subduction-modified depleted mantle, notably in intraoceanic arc settings in the forearc and back-arc regimes. These observations suggest that TTG magmatism may have taken place beneath granite-greenstone complexes developing along Archaean intraoceanic island arcs by imbricate thrust-stacking and tectonic accretion of a diversity of subduction-related terranes. Partial melting accompanying dehydration of these generally basaltic source materials at the base of thickened, 'arc-like' crust would produce compositionally appropriate TTG granitoids in equilibrium with eclogite residues.  相似文献   

17.
摘要: 在高压舱内进行了不同水深的水下湿法药芯焊丝焊接(FCAW)试验,以电弧电压差异系数的倒数作为衡量电弧稳定性的指标,分析了不同水深条件下电弧电压与焊接电流之间的相关性对电弧稳定性的影响,并从送丝 熔化系统的角度探讨了电压与电流的相关性对电弧稳定性的影响规律;利用二次函数拟合电弧稳定性指标与电弧电压之间的关系,得到最佳的电压与电流关系.结果表明:最佳的水下湿法FCAW的电压与电流关系曲线呈上升的变化特性,随着水深增加,FCAW需要更高的电弧电压;水下湿法FCAW的电弧稳定性取决于电压与电流的相关性,而并非简单地随着水深的增加而下降;水深对电弧稳定性的影响主要表现在电压与电流相关性的不同;随着水深增加,相同焊接电流所需的电弧电压相应地增大.  相似文献   

18.
Holocene volcanic rocks in Jingbo Lake region ? Diversity of magmatism   总被引:2,自引:0,他引:2  
During the time from 5500 a to 5200 a BP more than 10 Holocene volcanoes in Jingbo Lake region erupted and the volcanic rocks covered an area of about 500 km2. Holocene volcanic rocks in Jingbo Lake region belong to the potassium?rich rocks and contain three rock types: trachybasalts, basanites and phonotephrites. Various types of magmatism formed in a small area and in a short period of time came from partial melting of potassically?metasomatised lithospheric mantle. The diversity of magmatism can be explained by that Jingbo Lake is situated in the back?arc extensional region of East Asian continent subducted by the Pacific Ocean, and potassic fluid derived from mantle wedge or dehydration of subducted slab can result in a high heterogeneity of the mantle beneath this region. Based on the pressure estimation of clinopyroxene megacrysts, we estimate that phonotephrite magma fractionally crystallize at ca. 52?54 km down the earth.  相似文献   

19.
Making continental crust: The sanukitoid connection   总被引:6,自引:0,他引:6  
The average continental crust possesses intermediate compositions that typify arc magmatism and as a result it is believed to have been created at ancient convergent plate boundaries. One possible mechanism for intermediate continental crust formation is the direct production of andesitic melts in the upper mantle. Sanukitoids, which characterize the Setouchi volcanic belt, SW Japan, include unusually high-Mg andesites (HMA). They were generated by slab melting and subsequent melt-mantle interactions under unusual tectonic settings such as where warm lithosphere subducts into hot upper mantle. Such conditions would have existed in the Archean. Hydrous HMA magmas are likely to have solidified within the crust to form HMA plutons, which were then remelted to produce differentiated sanukitoids. At present, generation and differentiation of HMA magmas may be taking place in the Izu-Bonin-Mariana arc-trench system (IBM), because (1) HMA magmatism characterizes the initial stages of the IBM evolution and (2) the IBM middle crust exhibits Vp identical to that of the bulk conti- nental crust. Vp estimates for plutonic rocks with HMA compositions support this. However tonalitic composition for middle-crust-forming rocks cannot be ruled out, suggesting an alternative possibility that the continental crust has been created by differentiation of mantle-derived basaltic magmas.  相似文献   

20.
Bjørnerud MG  Austrheim H 《Nature》2006,440(7082):E4; discussion E4-E4; discussion E5
The mechanisms by which mafic rocks become converted to denser eclogite in the lower crust and mantle are fundamental to our understanding of subduction, mountain building and the long-term geochemical evolution of Earth. Based on larger-than-expected gradients in argon isotopes, Camacho et al. propose a new explanation--co-seismic injection of hot (700 degrees C) aqueous fluids into much colder (400 degrees C) crust--for the localized nature of eclogite metamorphism during Caledonian crustal thickening, as recorded in the rocks of Holsn?y in the Bergen arcs, western Norway. We have studied these unusual rocks, which were thoroughly dehydrated under granulite facies conditions during a Neoproterozoic event (about 945 million years (945 Myr) ago); we also concluded that fracture-hosted fluids were essential as catalysts and components in the conversion to eclogite about 425 Myr ago. However, we are sceptical of the assertion by Camacho et al. that eclogite temperatures were reached only in the vicinity of fluid-filled fractures. Determining whether these rocks were strong enough to fracture at depths of 50 km because they were cold or because they were very dry is crucial to understanding the mechanics of the lower crust in mountain belts, including, for example, the causes of seismicity in the Indian plate beneath the modern Himalayas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号