首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cis-regulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select genes.  相似文献   

2.
3.
As an index of functional divergence, expression divergence between duplicate gene copies has been observed and correlated with protein coding sequence divergence and bias in gene functional classes. However, the changes in the cis-regulatory region of the duplicate genes which is thought to have important role in expression divergence, has not been explored on the genome-wide scale. We analyzed functional genomics data for a large number of duplicated gene pairs formed by ancient polyploidy events in Arabidopsis thaliana. The divergence in cis-regulatory regions between two copies is positively correlated with the magnitude difference of expression. Moreover, we find that highly expressed duplicate gene pairs have a more diverged cis-regulatory region than weakly expressed gene pairs. We also show that the correlation between expression functional constraint and protein functional constraint is different in old and young duplicate pairs. Our results suggest that cis-regulatory sequence divergence contributes to the expression divergence of duplicate genes formed by genome-wide du-plication. Cis-regulatory region diverges faster in highly expressed duplicate pairs. The diversify selection strengths that act on cis-regulatory region and protein coding region are negatively correlated in young duplicate pairs under expression con-straint.  相似文献   

4.
A noteworthy feature of the living world is its bewildering variability. A key issue in several biological disciplines is the achievement of an understanding of the hereditary basis of this variability. Two opposing, but not necessarily irreconcilable conceptions attempt to explain the underlying mechanism. The gene function paradigm postulates that phenotypic variance is generated by the polymorphism in the coding sequences of genes. However, comparisons of a great number of homologous gene and protein sequences have revealed that they predominantly remained functionally conserved even across distantly related phylogenic taxa. Alternatively, the gene regulation paradigm assumes that differences in the cis-regulatory region of genes do account for phenotype variation within species. An extension of this latter concept is that phenotypic variability is generated by the polymorphism in the overall gene expression profiles of gene networks. In other words, the activity of a particular gene is a system property determined both by the cis-regulatory sequences of the given genes and by the other genes of a gene network, whose expressions vary among individuals, too. Novel proponents of gene function paradigm claim that functional genetic variance within the coding sequences of regulatory genes is critical for the generation of morphological polymorphism. Note, however, that these developmental genes play direct regulatory roles in the control of gene expression.  相似文献   

5.
A noteworthy feature of the living world is its bewildering variability. A key issue in several biological disciplines is the achievement of an understanding of the hereditary basis of this variability. Two opposing, but not necessarily irreconcilable conceptions attempt to explain the underlying mechanism. The gene function paradigm postulates that phenotypic variance is generated by the polymorphism in the coding sequences of genes. However, comparisons of a great number of homologous gene and protein sequences have revealed that they predominantly remained functionally conserved even across distantly related phylogenic taxa. Alternatively, the gene regulation paradigm assumes that differences in the cis-regulatory region of genes do account for phenotype variation within species. An extension of this latter concept is that phenotypic variability is generated by the polymorphism in the overall gene expression profiles of gene networks. In other words, the activity of a particular gene is a system property determined both by the cis-regulatory sequences of the given genes and by the other genes of a gene network, whose expressions vary among individuals, too. Novel proponents of gene function paradigm claim that functional genetic variance within the coding sequences of regulatory genes is critical for the generation of morphological polymorphism. Note, however, that these developmental genes play direct regulatory roles in the control of gene expression.  相似文献   

6.
Evidence for stabilizing selection in a eukaryotic enhancer element   总被引:64,自引:0,他引:64  
Ludwig MZ  Bergman C  Patel NH  Kreitman M 《Nature》2000,403(6769):564-567
  相似文献   

7.
8.
9.
10.
11.
The comparison of Hox genes between vertebrates and their closest invertebrate relatives (amphioxus and ascidia) highlights two derived features of Hox genes in vertebrates: duplication of the Hox gene cluster, and an elaboration of Hox expression patterns and roles compared with non-vertebrate chordates. We have investigated how new expression domains and their associated developmental functions evolved, by testing the cis-regulatory activity of genomic DNA fragments from the cephalochordate amphioxus Hox cluster in transgenic mouse and chick embryos. Here we present evidence for the conservation of cis-regulatory mechanisms controlling gene expression in the neural tube for half a billion years of evolution, including a dependence on retinoic acid signalling. We also identify amphioxus Hox gene regulatory elements that drive spatially localized expression in vertebrate neural crest cells, in derivatives of neurogenic placodes and in branchial arches, despite the fact that cephalochordates lack both neural crest and neurogenic placodes. This implies an elaboration of cis-regulatory elements in the Hox gene cluster of vertebrate ancestors during the evolution of craniofacial patterning.  相似文献   

12.
Five Australian wild cotton species with the delayed gland morphogenesis trait, as well as G. arboreum, G. davidsonii and four different gland genotypes of G. hirsutum, Gl2Gl2Gl3Gl3, Gl2Gl2gl3gl3, gl2gl2Gl3Gl3, and gl2gl2gl3gl3, were used in this experiment and 10 interspecific hybrids were obtained by the crossing among them. According to the gland expression on the seeds and plants of the interspecific hybrids, the inheritance of the delayed gland morphogenesis trait of Australian wild cotton species was opened out as follows: (ⅰ) the inheritance of the delayed gland morphogenesis trait was almost the same among the 5 Australian wild cotton species, and the gene or genes which controlled this trait may be located in the same loci. (ⅱ) The glandless seed trait of the Australian wild cotton species was dominant over the glanded seed trait of G. arboreum, a genome A species, and the seeds of interspecific hybrid F1 between them were glandless. However, it was recessive over the glanded character of genome D species, G.davidsonii, and their F1 was a typical glanded one. (ⅲ) The glandless seed trait of the Australian wild cotton species was recessive or incomplete dominant over the glanded cotton but dominant over the glandless cotton of G. hirsutum, and the glandless genes (gl2gl2gl3gl3) of upland cotton had great weakening effect on the glanded plant trait of the Australian wild cotton species on the other hand. For the two main glanded genes of upland cotton, the delayed gland morphogenesis trait of the Australian wild cotton species was dominant epistatic over glandless genes, gl2gl2gl3gl3, and one of the glanded genes, Gl2Gl2, but was recessive epistatic over the other glanded gene, Gl3Gl3. Therefore, it is much convenient to use Gl2Gl2gl3gl3 as the upland cotton parent in the interspecific hybridization and backcrossing afterward, in order to produce the upland cotton germplasm with glandless seeds and glanded plant trait.  相似文献   

13.
14.
15.
为了克服组成型表达转录因子基因影响转基因植物性状的缺点,并构建一种具有级联放大作用并带有表型标记的诱导型植物双价表达载体。研究采用PCR方法从拟南芥克隆获得冷诱导转录因子CBF3基因,蜡质合成相关WIN1基因,干旱诱导RD29A基因启动子和冷诱导的LEA14基因启动子,并用CBF3转录因子所调控的下游RD29A基因启动子和LEA14基因启动子分别驱动CBF3基因和W1N1基因表达,构建了双价植物表达载体RD29AP-CBF3/LEA14P—WIN1/pcAMBIA2201。我们预测在转基因植物中,该表达系统可在干旱等逆境信号存在条件下,通过级联放大的方式诱导表达,在增加植物抗逆性的同时,增加叶片表层蜡质的积累,从而易于表型识别。本研究为利用花粉管通道法转化棉花,提高抗逆转基因棉花田间筛选的效率奠定了基础。  相似文献   

16.
17.
B Zink  R Paro 《Nature》1989,337(6206):468-471
The specification and maintenance of the metameric pattern in Drosophila melanogaster is regulated by complicated gene interactions. The differential expression of the homoeotic genes of the Antennapedia complex (ANT-C) and bithorax complex (BX-C), which determine segmental identities, is partly controlled by cross-regulatory interactions of loci within the two clusters and partly by trans-acting factors located outside the two complexes. One of the trans-regulatory genes, Polycomb (Pc), acts as a repressor of the ANT-C and BX-C. Mutations of Polycomb result in a complete depression of the homoeotic genes, leading to abdominal transformations of all body segments. Polycomb is part of a large class of trans-regulatory genes (Pc-group), estimated to comprise up to 40 loci. We have raised antibodies against the Polycomb protein, and, using an improved immunostaining technique, showed that the Polycomb protein binds to 60 discrete sites along the polytene chromosomes of salivary glands. These sites comprise the ANT-C and the BX-C as well as several locations of Pc-group genes. This is the first clear evidence for a direct interaction of Polycomb with homoeotic loci and other Pc-group genes.  相似文献   

18.
Hopkins R  Rausher MD 《Nature》2011,469(7330):411-414
Species formation generates biological diversity and occurs when traits evolve that prevent gene flow between populations. Discerning the number and distribution of genes underlying these traits and, in a few cases, identifying the genes involved, has greatly enhanced our understanding over the past 15 years of species formation (reviewed by Noor and Feder and Wolf et al.). However, this work has almost exclusively focused on traits that restrict gene flow between populations that have evolved as a by-product of genetic divergence between geographically isolated populations. By contrast, little is known about the characteristics of genes associated with reinforcement, the process by which natural selection directly favours restricted gene flow during the formation of species. Here we identify changes in two genes that appear to cause a flower colour change in Phlox drummondii, which previous work has shown contributes to reinforcement. Both changes involve cis-regulatory mutations to genes in the anthocyanin biosynthetic pathway (ABP). Because one change is recessive whereas the other is dominant, hybrid offspring produce an intermediate flower colour that is visited less by pollinators, and is presumably maladaptive. Thus genetic change selected to increase prezygotic isolation also appears to result in increased postzygotic isolation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号