首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular mechanisms of aging are most fully understood for the budding yeast Saccharomyces cerevisiae. Recent advances in our understanding of aging in this organism have enabled researchers to answer some fundamental questions about the aging process. Is aging due to a multitude of 'mechanisms' or can there be a key few? Can we design single-gene mutations that will prolong life? Can we prolong life whilst maintaining health and fecundity? The various contributing factors to yeast longevity, uncovered thus far, fall into three classes: DNA metabolism, heterochromatin, and metabolic activity. However, these separate classes may actually represent different aspects of the same aging mechanism based on genome stability. This review examines the recent advances in our understanding of yeast aging and discusses their relevance, if any, to the human condition.  相似文献   

3.
Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.  相似文献   

4.
Endocytosis is a fundamental eukaryotic process required for remodelling plasma-membrane lipids and protein to ensure appropriate membrane composition. Increasing evidence from a number of cell types reveals that actin plays an active, and often essential, role at key endocytic stages. Much of our current mechanistic understanding of the endocytic process has come from studies in budding yeast and has been facilitated by yeast’s genetic amenability and by technological advances in live cell imaging. While endocytosis in metazoans is likely to be subject to a greater array of regulatory signals, recent reports indicate that spatiotemporal aspects of vesicle formation requiring actin are likely to be conserved across eukaryotic evolution. In this review we focus on the ‘modular’ model of endocytosis in yeast before highlighting comparisons with other cell types. Our discussion is limited to endocytosis involving clathrin as other types of endocytosis have not been demonstrated in yeast.  相似文献   

5.
The cdk-activating kinase (CAK): from yeast to mammals   总被引:25,自引:0,他引:25  
  相似文献   

6.
The cell monitors and maintains the fidelity of translation during the three stages of protein synthesis: initiation, elongation and termination. Errors can arise by multiple mechanisms, such as altered start site selection, reading frame shifts, misincorporation or nonsense codon suppression. All of these events produce incorrect protein products. Translational accuracy is affected by both cis- and trans-acting elements that insure the proper peptide is synthesized by the protein synthetic machinery. Many cellular components are involved in the accuracy of translation, including RNAs (transfer RNAs, messenger RNAs and ribosomal RNAs) and proteins (ribosomal proteins and translation factors). The yeast Saccharomyces cerevisiae has proven an ideal system to study translational fidelity by integrating genetic approaches with biochemical analysis. This review focuses on the ways studies in yeast have contributed to our understanding of the roles translation factors and the ribosome play in assuring the accuracy of protein synthesis.Received 27 November 2002; received after revision 16 April 2003; accepted 25 April 2003  相似文献   

7.
Endocytic budding implies the remodeling of a plasma membrane portion from a flat sheet to a closed vesicle. Clathrin- and actin-mediated endocytosis in yeast has proven a very powerful model to study this process, with more than 60 evolutionarily conserved proteins involved in fashioning primary endocytic vesicles. Major progress in the field has been made during the last decades by defining the sequential recruitment of the endocytic machinery at the cell cortex using live-cell fluorescence microscopy. Higher spatial resolution has been recently achieved by developing time-resolved electron microscopy methods, allowing for the first time the visualization of changes in the plasma membrane shape, coupled to the dynamics of the endocytic machinery. Here, we highlight these advances and review recent findings from yeast and mammals that have increased our understanding of where and how endocytic proteins may apply force to remodel the plasma membrane during different stages of the process.  相似文献   

8.
Aging—defined as the progressive impairment of an organism’s functional capacity, resulting from deleterious changes in cells, organs, and biological systems—is one of the most fundamental features of Eukaryotes, from humans to the unicellular budding yeast Saccharomyces cerevisiae. It has recently been reported that this may also be the case for certain (if not all) types of bacteria. In this paper, the current view on the mechanistic background and evolutionary significance of bacterial kind of aging is presented, with particular emphasis on the role of asymmetric cell division, the characteristics of stationary growth phase, and the role of oxidative protein damage.  相似文献   

9.
S-nitrosoglutathione (GSNO) formation represents a mechanism for storage and transport of nitric oxide. Analysis of human liver and Saccharomyces cerevisiae extracts has revealed the presence of only one enzyme able to significantly reduce GSNO, identified as glutathione-dependent formaldehyde dehydrogenase (FALDH). GSNO is the best substrate known for the human and yeast enzymes (kcat/Km = 444,400 and 350,000 mM(-1) min(-1), respectively). Although NADH is the preferred cofactor, some activity with NADPH (Km = 460 microM) can be predicted in vivo. The subcellular localization demonstrates a cytosolic and nuclear distribution of FALDH in living yeast cells. This agrees with previous results in rat, and suggests a role in the regulation of GSNO levels in the cytoplasmic and nuclear compartments of the eukaryotic cell.  相似文献   

10.
11.
The specific binding activity to [14C]thiamine was found to be located in hte plasma membrane of Saccharomyces cerevisiae. The activity was inhibited by several thiamine analogs and it was hardly detectable in the plasma membrane from a thiamine transport mutant of Saccharomyces cerevisiae. Some properties of the thiamine-binding activity of yeast plasma membrane are discussed in connection with those of the thiamine transport system.  相似文献   

12.
13.
Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.  相似文献   

14.
The two terms 'translation' and 'protein synthesis' are interchangeable in describing the process whereby the genetic code in the form of messenger RNA (mRNA) is deciphered such that amino acids cognate with the triplet code are joined end to end to form a peptide chain. However, new data suggest that the initial act of translation on newly synthesised mRNA also functions to proofread mRNA for errors. Aberrant mRNAs detected in this way are rapidly degraded before their encoded proteins impede normal cell function. Initiation of surveillance translation appears to differ from that of regular protein synthesis in three ways: (i) composition of the substrate; (ii) temporal and spatial restrictions; (iii) factors used to recruit the ribosome. This review discusses translational aspects of mRNA surveillance, primarily in the context of the mammalian system, although much information has come from studies in yeast and other organisms.  相似文献   

15.
16.
Composition and conservation of the telomeric complex   总被引:6,自引:0,他引:6  
The telomere is composed of telomeric DNA and telomere-associated proteins. Recently, many telomere-associated proteins have been identified, and various telomere functions have been uncovered. In budding yeast, scRap1 binds directly to telomeric DNA, and other telomere regulators (Sir proteins and Rif proteins) are recruited to the telomeres by interacting with scRap1. Cdc13 binds to the most distal end of the chromosome and recruits telomerase to the telomeres. In fission yeast and humans, TTAGGG repeat binding factor (TRF) family proteins bind directly to telomeric DNA, and Rap1 proteins and other telomere regulators are recruited to the telomeres by interacting with the TRF family proteins. Both organisms have Pot1 proteins at the most distal end of the telomere instead of a budding-yeast Cdc13-like protein. Therefore, fission yeast and humans have in part common telomeric compositions that differ from that of budding yeast, a result that suggests budding yeast has lost some telomere components during the course of evolution.  相似文献   

17.
18.
Defining a neuron: neuronal ELAV proteins   总被引:1,自引:1,他引:0  
Neuronal cells strongly depend on the control exerted by RNA-binding proteins (RBPs) on gene expression for the establishment and maintenance of their phenotype. Neuronal ELAV (nELAV) proteins are RBPs able to influence virtually every aspect of the postsynthesis fate of bound mRNAs, from polyadenylation, alternative splicing and nuclear export to cytoplasmic localization, stability and translation. They enhance gene expression through the last two, best documented activities, increasing mRNA half-life and promoting protein synthesis by a still-unknown molecular mechanism. Developmentally, nELAV proteins have been shown to act as inducers of the transition between neural stem/progenitor cells and differentiation-committed cells, also assisting these neuroblasts in the completion of their maturation program. In brain physiology, they are also the first RBPs demonstrated to have a pivotal role in memory, where they probably control mRNA availability for translation in subcellular domains, thereby providing a biochemical means for selective increase in synaptic strength. Received 15 January 2007; received after revision 10 August 2007; accepted 6 September 2007  相似文献   

19.
20.
Hairpin RNA: a secondary structure of primary importance   总被引:4,自引:0,他引:4  
An RNA hairpin is an essential secondary structure of RNA. It can guide RNA folding, determine interactions in a ribozyme, protect messenger RNA (mRNA) from degradation, serve as a recognition motif for RNA binding proteins or act as a substrate for enzymatic reactions. In this review, we have focused on cis-acting RNA hairpins in metazoa, which regulate histone gene expression, mRNA localization and translation. We also review evolution, mechanism of action and experimental use of trans-acting microRNAs, which are coded by short RNA hairpins. Finally, we discuss the existence and effects of long RNA hairpin in animals. We show that several proteins previously recognized to play a role in a specific RNA stem-loop function in cis were also linked to RNA silencing pathways where a different type of hairpin acts in trans. Such overlaps indicate that the relationship between certain mechanisms that recognize different types of RNA hairpins is closer than previously thought. Received 21 November 2005; received after revision 3 January 2006; accepted 11 January 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号