首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Using advanced gene targeting methods, generating mouse models of cancer that accurately reproduce the genetic alterations present in human tumors is now relatively straightforward. The challenge is to determine to what extent such models faithfully mimic human disease with respect to the underlying molecular mechanisms that accompany tumor progression. Here we describe a method for comparing mouse models of cancer with human tumors using gene-expression profiling. We applied this method to the analysis of a model of Kras2-mediated lung cancer and found a good relationship to human lung adenocarcinoma, thereby validating the model. Furthermore, we found that whereas a gene-expression signature of KRAS2 activation was not identifiable when analyzing human tumors with known KRAS2 mutation status alone, integrating mouse and human data uncovered a gene-expression signature of KRAS2 mutation in human lung cancer. We confirmed the importance of this signature by gene-expression analysis of short hairpin RNA-mediated inhibition of oncogenic Kras2. These experiments identified both a pattern of gene expression indicative of KRAS2 mutation and potential effectors of oncogenic KRAS2 activity in human cancer. This approach provides a strategy for using genomic analysis of animal models to probe human disease.  相似文献   

2.
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes that have been implicated in the regulation of gene expression, cell-cycle control and oncogenesis. MyoD is a muscle-specific regulator able to induce myogenesis in numerous cell types. To ascertain the requirement for chromatin remodeling enzymes in cellular differentiation processes, we examined MyoD-mediated induction of muscle differentiation in fibroblasts expressing dominant-negative versions of the human brahma-related gene-1 (BRG1) or human brahma (BRM), the ATPase subunits of two distinct SWI/SNF enzymes. We find that induction of the myogenic phenotype is completely abrogated in the presence of the mutant enzymes. We further demonstrate that failure to induce muscle-specific gene expression correlates with inhibition of chromatin remodeling in the promoter region of an endogenous muscle-specific gene. Our results demonstrate that SWI/SNF enzymes promote MyoD-mediated muscle differentiation and indicate that these enzymes function by altering chromatin structure in promoter regions of endogenous, differentiation-specific loci.  相似文献   

3.
In many prokaryotes and eukaryotes, DNA methylation at cis-regulatory sequences determines whether gene expression is on or off. Stable inheritance of these expression states is required in bacterial pathogenesis, cancer and developmental pathways. Here we delineate the factors that control the stability of these states by using the agn43 gene in Escherichia coli as a model system. Systematic disruption of this system shows that a functional switch requires the presence of several, rarely occupied, intermediate states that separate the 'on' and 'off' states. Cells that leave the on and off state enter different intermediate states, where there is a strong bias that drives cells back to their original state. The intermediate states therefore act as buffers that prevent back and forth switching. This mechanism of generating multiple states is an alternative to feedback regulation, and its general principle should be applicable to the analysis of other epigenetic switches and the design of synthetic circuits.  相似文献   

4.
5.
Although insights have emerged regarding genes controlling the early stages of eye formation, little is known about lens-fibre differentiation and elongation. The expression pattern of the Prox1 homeobox gene suggests it has a role in a variety of embryonic tissues, including lens. To analyse the requirement for Prox1 during mammalian development, we inactivated the locus in mice. Homozygous Prox1-null mice die at mid-gestation from multiple developmental defects; here we describe the specific effect on lens development. Prox1 inactivation causes abnormal cellular proliferation, downregulated expression of the cell-cycle inhibitors Cdkn1b (also known as p27KIP1) and Cdkn1c (also known as p57KIP2), misexpression of E-cadherin and inappropriate apoptosis. Consequently, mutant lens cells fail to polarize and elongate properly, resulting in a hollow lens. Our data provide evidence that the progression of terminal fibre differentiation and elongation is dependent on Prox1 activity during lens development.  相似文献   

6.
7.
Hay A  Tsiantis M 《Nature genetics》2006,38(8):942-947
A key question in biology is how differences in gene function or regulation produce new morphologies during evolution. Here we investigate the genetic basis for differences in leaf form between two closely related plant species, Arabidopsis thaliana and Cardamine hirsuta. We report that in C. hirsuta, class I KNOTTED1-like homeobox (KNOX) proteins are required in the leaf to delay cellular differentiation and produce a dissected leaf form, in contrast to A. thaliana, in which KNOX exclusion from leaves results in a simple leaf form. These differences in KNOX expression arise through changes in the activity of upstream gene regulatory sequences. The function of ASYMMETRIC LEAVES1/ROUGHSHEATH2/PHANTASTICA (ARP) proteins to repress KNOX expression is conserved between the two species, but in C. hirsuta the ARP-KNOX regulatory module controls new developmental processes in the leaf. Thus, evolutionary tinkering with KNOX regulation, constrained by ARP function, may have produced diverse leaf forms by modulating growth and differentiation patterns in developing leaf primordia.  相似文献   

8.
Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease   总被引:16,自引:0,他引:16  
Darier disease (DD) is an autosomal-dominant skin disorder characterized by loss of adhesion between epidermal cells (acantholysis) and abnormal keratinization. Recently we constructed a 2.4-Mb, P1-derived artificial chromosome contig spanning the DD candidate region on chromosome 12q23-24.1. After screening several genes that mapped to this region, we identified mutations in the ATP2A2 gene, which encodes the sarco/endoplasmic reticulum Ca2(+)-ATPase type 2 isoform (SERCA2) and is highly expressed in keratinocytes. Thirteen mutations were identified, including frameshift deletions, in-frame deletions or insertions, splice-site mutations and non-conservative missense mutations in functional domains. Our results demonstrate that mutations in ATP2A2 cause DD and disclose a role for this pump in a Ca(2+)-signalling pathway regulating cell-to-cell adhesion and differentiation of the epidermis.  相似文献   

9.
Multidrug treatments are increasingly important in medicine and for probing biological systems. Although many studies have focused on interactions between specific drugs, little is known about the system properties of a full drug interaction network. Like their genetic counterparts, two drugs may have no interaction, or they may interact synergistically or antagonistically to increase or suppress their individual effects. Here we use a sensitive bioluminescence technique to provide quantitative measurements of pairwise interactions among 21 antibiotics that affect growth rate in Escherichia coli. We find that the drug interaction network possesses a special property: it can be separated into classes of drugs such that any two classes interact either purely synergistically or purely antagonistically. These classes correspond directly to the cellular functions affected by the drugs. This network approach provides a new conceptual framework for understanding the functional mechanisms of drugs and their cellular targets and can be applied in systems intractable to mutant screening, biochemistry or microscopy.  相似文献   

10.
Enzymatic production of RNAi libraries from cDNAs   总被引:30,自引:0,他引:30  
RNA interference (RNAi) induced by small interfering (siRNA) or short hairpin RNA (shRNA) is an important research approach in mammalian genetics. Here we describe a technology called enzymatic production of RNAi library (EPRIL) by which cDNAs are converted by a sequence of enzymatic treatments into an RNAi library consisting of a vast array of different shRNA expression constructs. We applied EPRIL to a single cDNA source and prepared an RNAi library consisting of shRNA constructs with various RNAi efficiencies. High-throughput screening allowed us to rapidly identify the best shRNA constructs from the library. We also describe a new selection scheme using the thymidine kinase gene for obtaining efficient shRNA constructs. Furthermore, we show that EPRIL can be applied to constructing an RNAi library from a cDNA library, providing a basis for future whole-genome phenotypic screening of genes.  相似文献   

11.
12.
We present the first analysis of the human proteome with regard to interactions between proteins. We also compare the human interactome with the available interaction datasets from yeast (Saccharomyces cerevisiae), worm (Caenorhabditis elegans) and fly (Drosophila melanogaster). Of >70,000 binary interactions, only 42 were common to human, worm and fly, and only 16 were common to all four datasets. An additional 36 interactions were common to fly and worm but were not observed in humans, although a coimmunoprecipitation assay showed that 9 of the interactions do occur in humans. A re-examination of the connectivity of essential genes in yeast and humans indicated that the available data do not support the presumption that the number of interaction partners can accurately predict whether a gene is essential. Finally, we found that proteins encoded by genes mutated in inherited genetic disorders are likely to interact with proteins known to cause similar disorders, suggesting the existence of disease subnetworks. The human interaction map constructed from our analysis should facilitate an integrative systems biology approach to elucidating the cellular networks that contribute to health and disease states.  相似文献   

13.
We report here the identification of a gene associated with the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. A single locus associated with HPT-JT (HRPT2) was previously mapped to chromosomal region 1q25-q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT-JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT-JT and in development of some sporadic parathyroid tumors.  相似文献   

14.
15.
16.
The Human Genome Project and its spin-offs are making it increasingly feasible to determine the genetic basis of complex traits using genome-wide association studies. The statistical challenge of analyzing such studies stems from the severe multiple-comparison problem resulting from the analysis of thousands of SNPs. Our methodology for genome-wide family-based association studies, using single SNPs or haplotypes, can identify associations that achieve genome-wide significance. In relation to developing guidelines for our screening tools, we determined lower bounds for the estimated power to detect the gene underlying the disease-susceptibility locus, which hold regardless of the linkage disequilibrium structure present in the data. We also assessed the power of our approach in the presence of multiple disease-susceptibility loci. Our screening tools accommodate genomic control and use the concept of haplotype-tagging SNPs. Our methods use the entire sample and do not require separate screening and validation samples to establish genome-wide significance, as population-based designs do.  相似文献   

17.
Wang E  Wang J  Zhu X  Hao W  Wang L  Li Q  Zhang L  He W  Lu B  Lin H  Ma H  Zhang G  He Z 《Nature genetics》2008,40(11):1370-1374
Grain-filling, an important trait that contributes greatly to grain weight, is regulated by quantitative trait loci and is associated with crop domestication syndrome. However, the genes and underlying molecular mechanisms controlling crop grain-filling remain elusive. Here we report the isolation and functional analysis of the rice GIF1 (GRAIN INCOMPLETE FILLING 1) gene that encodes a cell-wall invertase required for carbon partitioning during early grain-filling. The cultivated GIF1 gene shows a restricted expression pattern during grain-filling compared to the wild rice allele, probably a result of accumulated mutations in the gene's regulatory sequence through domestication. Fine mapping with introgression lines revealed that the wild rice GIF1 is responsible for grain weight reduction. Ectopic expression of the cultivated GIF1 gene with the 35S or rice Waxy promoter resulted in smaller grains, whereas overexpression of GIF1 driven by its native promoter increased grain production. These findings, together with the domestication signature that we identified by comparing nucleotide diversity of the GIF1 loci between cultivated and wild rice, strongly suggest that GIF1 is a potential domestication gene and that such a domestication-selected gene can be used for further crop improvement.  相似文献   

18.
Notch1 functions as a tumor suppressor in mouse skin   总被引:24,自引:0,他引:24  
Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.  相似文献   

19.
Autosomal recessive severe congenital neutropenia (SCN) constitutes a primary immunodeficiency syndrome associated with increased apoptosis in myeloid cells, yet the underlying genetic defect remains unknown. Using a positional cloning approach and candidate gene evaluation, we identified a recurrent homozygous germline mutation in HAX1 in three pedigrees. After further molecular screening of individuals with SCN, we identified 19 additional affected individuals with homozygous HAX1 mutations, including three belonging to the original pedigree described by Kostmann. HAX1 encodes the mitochondrial protein HAX1, which has been assigned functions in signal transduction and cytoskeletal control. Here, we show that HAX1 is critical for maintaining the inner mitochondrial membrane potential and protecting against apoptosis in myeloid cells. Our findings suggest that HAX1 is a major regulator of myeloid homeostasis and underline the significance of genetic control of apoptosis in neutrophil development.  相似文献   

20.
Focal dermal hypoplasia (FDH) is an X-linked dominant multisystem birth defect affecting tissues of ectodermal and mesodermal origin. Using a stepwise approach of (i) genetic mapping of FDH, (ii) high-resolution comparative genome hybridization to seek deletions in candidate chromosome areas and (iii) point mutation analysis in candidate genes, we identified PORCN, encoding a putative O-acyltransferase and potentially crucial for cellular export of Wnt signaling proteins, as the gene mutated in FDH. The findings implicate FDH as a developmental disorder caused by a deficiency in PORCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号