首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以前有科学家准备制造一种禽流感病毒的变体以便对这种病毒深入研究,但在被警告"如果不小心让它跑掉,数百万人生命将受威胁"后,这些科学家主动终止了这项研究,但2013年年初,科学家再度启动了这个研究项目。一年前,有关H5N1传播的研究在制造潜在危险病毒可能被生物恐怖主义利用的恐怖呼声中停下来。当时两个科研组分别发现,这种病毒发生突变后可通过空气在  相似文献   

2.
经历了为期一年的停滞之后,世界各国顶尖的病毒学家们决心重新打开他们手中的"潘多拉魔盒"。他们的决定事关一种能导致全球一半人口死亡的病毒。2012年初,在荷兰科学家罗恩·富希耶的实验室中,高致病性禽流感H5N1病毒历经10个世代的变异,拥有了通过空气在人类之间传染的能力。类似的病毒也在美国威斯康星大学麦迪逊分校河冈义裕教授的实验室中被创建。而  相似文献   

3.
正H7N9:已突变,有风险H5N1和H7N9是近年来对人类威胁最大的两种禽流感病毒,H5N1病毒自1997年在首次感染人类后,在全球60多个国家肆虐,死亡率高达60%。H7N9在2013年2月底在中国长三角地区首次出现后,10个月内,在中国12个省市发现了148人感染,其中46人死亡。在这样的尖峰时刻,中国科学院北京生命科学研究院副院长、微生物研究所研究  相似文献   

4.
在国家卫计委举行的在线访谈活动中,中国疾病预防控制中心有关人士表示,H7N9病毒并没有完全被阻断,它仍然在禽类中存在。一般流感病毒在天气比较炎热时传播减弱,在比较寒冷的气候条件下更容易传播,H7N9是否也会如此目前尚不清楚,因而在进入秋季以后,我们对疫情传播一定要加倍警惕。从野生鸟类到家禽再到人由于感染人的H7N9病毒的"凭空"出现,人们首先就会想知道"它是从哪里来的?""到底是自然界中存在的病毒,还是人为制造的?"禽流感病毒的天然宿主是野生  相似文献   

5.
2013年3月底,在中国上海、安徽发现了一种新型人感染禽流感——H7N9禽流感(H7N9 avian influ-enza)。人感染H7N9禽流感是由H7N9亚型禽流感病毒引起的急性呼吸道传染病。截至2013年4月17日,全国共报告77例确诊病例,其中死亡16人。  相似文献   

6.
《中国基础科学》2013,(4):63-63
一种新的H7N9病毒于2013年3月首次检测到。早期的分析提示,这是一种由H7、N9和H9N2禽流感病毒重组形成的病毒,它携带有与哺乳动物受体结合相关的一些氨基酸,这引起了人们对一次新的大流行的忧虑。  相似文献   

7.
南都 《科学大观园》2012,(12):67-67
英国《自然》杂志刊登了一篇有关致命性禽流感病毒变异研究的论文。科学家在实验室研究中,对禽流感病毒进行基因改造。变异研究的消息一经传出便引发巨大争议,致使很多人陷入恐慌之中。令美国生物安全专家担心的是,变异的禽流感病毒可能被恐怖分子利用进而引发灾难性后果。  相似文献   

8.
<正>霍比特人真的存在过吗?在看过《魔戒》和《霍比特人》的人们中,很多人对影片中的形色各异的"霍比特小矮人"一定印象深刻,那"霍比特小矮人"有没有可能在地球的某一个地方真实存在呢?英国伦敦帝国学院进化动物学家林德尔·布朗厄姆和马塞尔·卡尔迪洛在2007年4月出版的《生物学通讯》上发表文章说,电影中出现的"霍比特人",也许是原始人类的一支,由于进化压力才演变成矮小体型。也就是说,影片中的小矮人在人类进化史上可能确实存在过。"小矮人"真实存在过的证据  相似文献   

9.
历数古今中外,流感病毒给人类带来过无数次惨痛的教训。从1997年香港出现H5N1感染人类开始,禽流感病毒也成为人类新的威胁。这种本来只流行于鸡群中的烈性传染病,已经经过了多次变异,并跨越了原先的范围,开始侵袭人类社会。截止到2013年3月,全球共报告了人感染高致病性H5N1禽流感622例,其中死亡371例,病例分布于15个国家。  相似文献   

10.
《中国科技成果》2008,(6):49-49
中国疾病预防控制中心病毒病预防控制所承担的国家科技攻关计划“新发禽流感病荧光RT-PCR检测技术的应用研究”(2003BA712A03-01)课题,旨在建立一套基于TaqMan-based real-timePCR方法的快速诊断技术,用于禽流感病毒的快速诊断。研制针对使人致病的禽流感病毒H5N1、H7N7和H9N2亚型的试剂盒,使其在全国的流感监测、养禽业的禽流感病毒检测以及海关的进出口检验检疫中发挥作用,从而提高我国检测能力以完善我国公共卫生监测体系。课题取得以下主要成绩:  相似文献   

11.
《中国基础科学》2013,(4):64-64
过去的研究认为,禽流感病毒跨越种群障碍引起在人类流行需要在中间家畜宿主中与可感染哺乳动物的流感病毒进行重组。H5N1禽流感病毒可感染猪,这种病毒的一部分已经具有对哺乳动物唾液酸受体的亲和性。  相似文献   

12.
一、禽流感病毒(Avian Influenza Virus,AIV)(1)流感病毒流感病毒属于正黏病毒科(Orthomyxoviridae family),病毒的基因组由8个单股RNA构成,分别编码10个与病毒结构和功能有关的蛋白质,片段1和2分别编码PB2和PB1蛋白,片段3编码PA蛋白,这三个蛋白与病毒的RNA聚合酶活性有关。片段4编码血凝素(HA)糖蛋白,片段5和6分别编码核蛋白(NP)和神经氨酸酶(NA)蛋白。其中HA糖蛋白和NA蛋白具有型特异性,能产生有保护作用的抗体;NP具有种的特异性,能产生具有交叉保护作用的抗体和细胞免疫反应。片段7编码基质蛋白M1和M2,片段8编码非结构蛋白NS1和NS2,可能与病毒基因组的转录过程有关。流感病毒可依据其中的核蛋白(NP)和基质蛋白(M)分为四个属:甲型(A)流感病毒属、乙型(B)流感病毒属、丙型(C)流感病毒属和类托高土病毒属。A型流感广泛存在于禽类、人类及其他动物中,其感染范围很广,多以流行的形式出现。C型流感存在于人类和猪中,但极少引起流行。而B型流感仅存在于人类,常常只引起流感的局部暴发。(2)禽流感病毒AIV病毒属于A型流感病毒属,病毒粒子呈球状,直径80~120nm,常呈丝状,长短不一,具有多型性,具囊膜,表面有许多放射状排列的突起,其长度约为12~14nm,这种突起可分为两类,一类呈棒状,由HA分子三聚体构成;另一类呈蘑菇状,由NA分子四聚体构成。病毒由70~75%的蛋白质,1~2%的核糖核酸(RNA),20~25%脂质和5~8%的糖组成,病毒蛋白质含有5种多肽,即血凝素、神经氨酸酶、基质蛋白、核蛋白和多聚酶。AIV对乙醚、氯仿、丙酮等有机溶剂均敏感,容易被常用消毒药灭活,对热的抵抗力较弱,加热60℃10分钟,70℃2分钟即可被灭活,在干燥的尘埃中可存活2周,在4℃可保存数周,在冻干状态或50%甘油生理盐水中可保存数年。(3)禽流感病毒的亚型及流感病毒的命名法依据流感病毒表面结构蛋白血凝素(HA)和神经胺酸酶(NA)抗原性的不同,可将A型流感病毒分成不同的血清亚型。目前有15种HA(H)亚型和9种NA(N)亚型,1980年WHO公布了流感病毒新的统一命名法。A型流感病毒的命名法公式为:型别/宿主/分离地点/毒株序号(采样时标本号)/分离年代(血凝素亚型神经氨酸酶亚型),如A/马/黑龙江/1/89(H3N8),B型和C型流感病毒的命名法与A型流感病毒的命名法相同,但无亚型划分。如B/京科/26/58,C/猪/京科/32/81。(4)禽流感病毒的毒力不同的AIV亚型的毒力不同,同一亚型内的不同毒株及同一毒株感染不同宿主的毒力也不尽相同,目前国际上一般按欧共体规定的静脉内致死指数(IVPI)来判断毒力,某一毒株感染某一宿主时,当IVPI≥1.2,则认为是高致病性毒株,当IVPI<1.2时,则被认为是低致病毒株。根据这一标准目前所有被判为高致病性毒株都属于H5和H7,AIV的致病性是各基因共同作用的结果,其中HA起着重要的作用。AIV感染细胞时HA被裂解为HA1和HA2。HA2N末端可插入细胞膜的脂质双层,因为HA2 N末端有多个疏水性氨基酸构成的亲脂性结构。插入脂质双层的HA2可在病毒囊膜和细胞膜之间形成一个通道,使两膜融合病毒核酸得以入侵宿主细胞。如果细胞内缺乏相应的蛋白酶,则HA不能被裂解为HA1和HA2,所产生的病毒粒子将不能入侵其他细胞,这样病毒的感染将局限在一定的细胞内。将高致病性H5和H7型毒株进行核苷酸和氨基酸序列分析,发现高致病性毒株的HA在裂解位点附近有4个或更多的碱性氨基酸,而低致病性毒株的HA仅有一个精氨酸。因此高致病性毒株的HA可被多种细胞内蛋白酶所识别,这就增加了病毒株在机体内的广嗜细胞性,一旦感染就会迅速突破器官屏障,从而造成机体的全身感染,引发高致病性流感的发生。由此可见HA的可裂解性的大小决定了禽流感病毒毒力的强弱,而其识别和结合宿主细胞受体的特性,决定了宿主的范围。(5)禽流感病毒的遗传与变异AIV具有众多血清亚型是其遗传变异频繁的结果,其机理涉及分子水平的抗原转移和漂移。抗原漂移是指由于基因组自发的点突变引起的小幅度的变异,导致氨基酸的改变积累到一定的程度或突变的氨基酸正好使抗原决定簇改变,引起抗原性的变异,转移是由于较大幅度的突变导致新的亚型的出现,原因之一是RNA聚合酶缺乏校正功能,病毒基因组复制时容易出错,另一个原因是由于AIV基因组的节段性,当不同的毒株同时感染同一细胞时,其核酸片段可发生同源交换,从而导致了抗原性的改变。其中A型流感病毒广泛存在于禽类和哺乳动物中,基因组的分节段性,使得其易于发生混合感染而产生重组株病毒。二、禽流行性感冒(简称禽流感,Avian Influenza)禽流行性感冒(Avian Influenza)是由A型流感病毒引起的一种烈性禽类病毒性疾病。其易感动物包括鸡、火鸡、珠鸡、野鸡、鹌鹑、鹧鸪、燕鸥、鸽、鸭、鹅等。(1)禽流感的临床特点禽类在感染禽流感后,其症状从不明显到急性或高死亡率不等。疾病的严重程度取决于病毒的毒株和被感染的禽种。综合征可为亚临床到轻度的呼吸系统疾病,从产蛋下降到急性致死性疾病。其组织病变主要是脑、皮肤及内脏器官组织坏死,消化道各脏器出血及泌尿生殖道的炎症,其临床症状与病理变化易与新城疫、急性禽霍乱、传染性支气管炎、减蛋综合征等混淆,且常继发或并发而易误诊或延误治疗,因此危害极大。(2)高致病性禽流感、临床特点及危害高致病性禽流感常以突然死亡和高死亡率为主要特征,常导致感染鸡群的全军覆灭,历史上历次高致病性禽流感的暴发均造成了严重的经济损失。1983年4月在美国北部宾夕法尼亚、弗吉尼亚、新泽西等州发生的H5N2高致病性禽流感疫情中,共计淘汰了1700万只鸡,直接耗资6千万美元,给生产者和消费者分别带来了相当于现今的8500万和4.9亿美元的直接经济损失。1985~1986年在美国的再次暴发中,所有发病鸡群均被扑杀,这次发病所造成的损失较1983~1984年的更为严重。(3)中低致病性禽流感、临床特点及危害低致病性禽流感常以呼吸道症状,产蛋率、受精率及孵化率下降为主要特征,从而引发严重的经济损失。1996至1998年在美国宾夕法尼亚暴发的低致病性H7N2禽流感流行中,包括生产的损失、鸡蛋销毁、饲料销毁、鸡蛋包装材料销毁、垃圾处理、油料费用、扑杀费用、清扫和消毒费用、合同付款额、掩埋所用费用和土地占用等诸多方面在内的经济损失总计达350万美元,这一次禽流感的流行极大地影响了当地及该区域内养禽业的发展。近年来,我国局部地区流行的中等毒力以下H9亚型禽流感,也同样给各区域的养禽业造成了巨大的经济损失。(4)禽流感与人流感病毒致病性的分子基础流感病毒的致病性取决于宿主与病毒之间的关系,病毒的不同基因节段在决定病毒致病性方面有着不同的作用,其中起主要作用的是HA蛋白。首先它可以识别宿主细胞的受体并与其结合,流感病毒HA蛋白受体的特异性取决于宿主的种属,人流感病毒的受体多为唾液酸α2.6半乳糖的唾液寡糖(SA2,6Gal)结合特异性,禽流感几乎都是唾液酸α2.3半乳糖的唾液寡糖(SA2,3Gal)结合特异性,这种差异与HA蛋白受体部位上第226位氨基酸密切相关,人流感和禽流感病毒受体结合位点第226位的单一氨基酸通常分别为Leu和Gln。第二,依赖宿主细胞转运蛋白水解酶切割,使HA2 N端融合序列裸露与宿主细胞产生融合,使病毒的基因组进入细胞,病毒开始复制。(5)禽流感病毒对人类流感新毒株形成的影响禽流感病毒亚型繁多,除可感染家禽和野鸟外,也可引起海豹、鲸鱼、猪和马等哺乳动物的感染,通常认为禽流感病毒是人流感病毒的庞大基因库,是人流感病毒发生变异的新基因的来源,在人类以前仅发现3个H抗原型(H1、H2、H3)和2个N抗原型(N1、N2),而所有15种不同的H型和9种不同的N型均可在禽流感病毒中找到,这种联系是通过中间宿主(如猪)来实现的。流感病毒的宿主范围大多取决于其HA蛋白,病毒的感染,需要细胞膜上特异性结合位点,人类与禽类细胞膜上的结合位点有很大的不同,而猪的种间障碍较低,猪体内则存在人和禽流感病毒的2种受体,人与禽流感病毒均可以感染猪,禽流感病毒在中间宿主(如猪)中与人流感病毒杂交,从而获得人类细胞特异性的受体结合位点,增加了新流感病毒(包括可以感染人的毒株)产生的概率,对人类的健康构成了潜在的威胁。纵观人类历史上历次流感的全球大流行,都对人类社会造成了极大的危害。20世纪共发生过3次瘟疫性的流感,第一次是1918年至1919年的“西班牙流感”,第二次和第三次流感的大暴发是1957至1958年的“亚洲流感”和1968年至1969年的“香港流感”,每一次人类流感的大流行都与禽流感病毒有着密切的联系,经证实,1918年-1919年引起世界性大流行的猪型(H1N1)流感病毒来自于禽流感病毒,1957年至1958年流行的H2N2病毒株,是H1N1流感病毒与禽流感病毒经基因重排而来,1968年至1969年,H2N2又与鸭中循环的禽流感病毒血凝素基因经基因重排形成新的H3N2流感病毒,并引起了“香港流感”的发生。(6)禽流感病毒对人类的直接感染在历史上的历次禽流感暴发中,均未见有关禽流感感染人的报道,而在1997年的香港禽流感事件中,禽流感病毒首次突破种间障碍,不经在猪体中的基因重排过程而直接感染人并且致人死亡,引起了香港及全世界的震惊,目前在越南流行的禽流感也相继出现直接感染人的病例。毫无疑问,禽流感已经对人类健康构成了现实的威胁。97’香港禽流感事件中,将分离自病人体内的病毒分别与人源和禽源流感病毒进行比较,发现该病毒的8个基因片段同源率最高(90.1~98.5%)的毒株均为禽流感病毒,未发现任何曾经在中间宿主中与人流感病毒发生基因重排的证据,由此可确定该病毒来源于禽类。它对人类的直接感染,打破了禽流感病毒感染人的种间屏障法则,这一事件,虽然从给人类造成的灾害及对养禽业造成的损失方面无法与1968年至1969年的“香港流感”及1983年美国、1995年墨西哥的两次禽流感大暴发相比,但却拉开了禽流感直接感染人并致人死亡的序幕,凸现了禽流感病毒的公共卫生意义。近期发生的周边国家禽流感直接感染人的病例更使我们认识到,人类要控制消灭人流感就必须控制消灭禽流感,同样人们要控制消灭禽流感,也必须控制消灭人流感,任何单方面的措施都将是徒劳的。三、禽流感病毒感染的综合防治:(1)禽流感的免疫预防流感病毒水平传播效率极高,其致病力变异极为复杂,并且对其机制迄今知之甚少,禽流感的弱毒疫苗自然成为可望而不可及的奢望。传统的灭活疫苗具有良好的免疫保护性,是禽流感防治的主动措施、关键环节和最后防线。在世界上许多国家禽流感防治中都起到了极其重要的作用,同时对我国禽流感局部疫情的控制也起到了极大的作用。在我国禽流感灭活苗研制和应用的同时,我国在禽流感基因工程疫苗的研制方面也取得了一批具国际先进水平的研究成果。使我国应用禽流感基因工程疫苗,清除鸡群中流行的H5、H7高、低致病力禽流感病毒及目前流行比较广泛、危害严重的中、低致病力H9亚型禽流感病毒的防治策略成为可能。(2)禽流感的药物治疗抗禽流感的药物目前主要有包括金刚烷胺类和金刚乙胺在内的离子通道抑制剂、神经氨酸酶抑制剂RWJ-270201等神经氨酸酶抑制剂、唾液酸寡聚糖类似物等流感病毒受体阻滞剂、抗流感病毒反义寡核苷酸和包括酚类及醌类衍生物在内的黑色素等几大类,同时也包括其他一些化学药物,如三氮脞核苷、蛋白酶抑制剂、吗啉双胍、异喹啉、环辛胺等。这些药物分别通过抑制流感病毒复制,阻断流感病毒对细胞的吸附,侵入途径等机制,实现对禽流感的治疗,部分药品的投入使用已取到良好的治疗效果。(3)禽流感的综合防制除采取一般的免疫预防为主并结合药物治疗的方针外,对禽流感病毒感染应采取不同于其他禽病的防治措施。首先一点,禽流感病毒具有感染宿主的多样性特点,因此,除了要控制和消灭疫源外,应对家禽(尤其是鸡)施行全封闭饲养,避免鸡群与水禽和野鸟间任何形式的接触,加强活禽市场的管理,以切断传播途径。其次,禽流感亚型众多加上基因突变、重组和重排,使得禽流感变异极快,这就决定了首先要使用敏感的诊断方法,加强疫情监测工作,尤其是禽流感高致病力毒株突然出现的特点,需要定期、持续、跟踪监测和及时、准确的预测预报,与此同时,还必须加强病毒分子生态学与分子流行病学研究,惟有如此,才能确定不同禽种、不同时间和不同地区禽流感病毒的特点和差异,才能减少禽流感防治中的盲目性。最后,必须制定正确的免疫预防策略,禽流感免疫呈现突出的亚型特异性保护的特点,亚型间交叉免疫保护性差,决定了必须使用亚型特异性疫苗和多价疫苗,同时禽流感的免疫预防还应考虑到尽量不干扰血清学监测,这可通过开发使用高新技术疫苗得以解决。另外,对检测到高致病力禽流感病毒感染的鸡群,必须采取断然扑灭的措施,只有这样,才有可能消灭禽流感尤其是高致病力禽流感病毒对鸡群乃至对人类的感染。最终,我们应该相信,随着禽流感病毒分子生物学、分子遗传学研究的不断加强;只要依靠不断建立的更加快速、敏感、准确的诊断方法并加紧应用到流行病学监测中;依靠不断深入研制的安全有效疫苗,加之有效的疫病控制措施,我们一定会有效地避免禽流感,尤其是高致病性禽流感对我国养禽业和我国国民经济以及人民身体健康所构成的巨大威胁。  相似文献   

13.
汪忆 《科学大观园》2013,(20):34-34
美国政府卫生机构在2013年9月18日宣布,一种试验性H7N9疫苗将在美国开始人体临床试验,以验证有关疫苗的安全性以及不同剂量引起的免疫反应等关键信息。美国国家过敏症和传染病研究所所长安东尼·福奇在当天的一份声明中说,正如人们此前未曾接触的所有新型流感病毒一样,H7N9禽流感病毒有大范围流行并造成大量死亡的潜力,现在开始测试这种候选疫苗,希望能避免H7N9大流行发生。国家过敏症和传染病研究所还表示,临  相似文献   

14.
<正>大量的动物病毒在人类中导致了毁灭性的疾病。然而,大自然中可能还有更多的"存货"。美国研究人员在一项的研究中估计,仅在哺乳动物中就可能潜伏着超过32万种未知的病毒。如果其中的一种感染给人类,就有可能引发下一场流行病大暴发。科学家估计,大约2/3的新发传染病都起源于野生动物,例如鸟类、蝙蝠、  相似文献   

15.
人在太空飞来飞去一定浪漫,在太空举行婚礼,"洞房花烛"夜,生儿育女更令人遐想.新的太空人种真的能出现吗?人类的太空后代真的是"超人"吗????  相似文献   

16.
《中国基础科学》2013,(4):50-50
最近的研究已经识别出流感病毒血凝素(HA)的几个变异,帮助高致病性甲型禽流感病毒H5N1在哺乳动物间通过空气传播。中国科学院微生物研究所高福研究组与合作者,解析了野生型H5N1流感病毒血凝素和来自印度尼西亚的一个突变型病毒血凝素分别与禽或人源唾液酸受体结合的复合物的晶体结构。他们观察到与受体相连的糖苷键存在一个顺式/反式构象的改变,  相似文献   

17.
候鸟是巨大的病毒库吗中国畜牧兽医学会禽病学分会理事长周蛟研究员表示,很多候鸟都可能携带禽流感病毒。在迁徙过程中,其排泄物、污染过的水源等与人类饲养的家禽接触后,就会在家禽中传播禽流感病毒。然而,候鸟身上携带的绝不仅禽流感一种病毒。全国鸟类环志中心主任楚国忠研究员说,鸟和其他动物一样,也要生病死亡,也会携带很多病原物。在自然界中,疾病是调整鸟类种群数量的一个重要手段。尽管源于鸟类的动物传染病很少,但是目前人们已经发现数十种可以由鸟类携带的病原物传染给人类的疾病。候鸟的体内外经常带有一些病原物,包括病毒、衣原…  相似文献   

18.
正我们正在面临一场自然和人类自身关系的危机,而传染病,是其中的一个侧影。新冠病毒的肆虐,大概是2020年冬春之交的最惨痛记忆,或许也是近10年对我们健康的最大挑战。让我们焦虑的,或许不是病毒有多致命,而是这种神秘的、行迹诡异的病毒,让毫无经验的人们防不胜防。它哪里来,又要到哪里去?人类曾经用了两个多世纪,似乎是"战胜"了大量致命的传染病,将人类的平均寿命大大提高。但是否又会有新的疾病出现,对人类社会发起挑战?  相似文献   

19.
禽流感爆发之后,鱼类又一次被看作是"最安全"的食物。吃鱼真的安全么?生活在水中的鱼类,其肉质健康与否往往和水质的好坏息息相关。以食用的安全性来排序,由高至低应为:海水鱼、淡化养殖海水鱼、淡水鱼。不久前,上海市松江区部分水域出现大量死鱼。经有关部门检测,很可能是因大规模批量放生的鱼不适应温差所致。但是经过这一事件,对食用水产品安全性的担忧又重新进入了我们的视线。到底有哪些鱼类和其他水产品是安全的,又有哪些可能带来疾病隐患?  相似文献   

20.
传统的蒙古语名词法中形成名词时,只用词根和词缀两种词素组成名词。但形成化学物质蒙文名词时,依据国际纯粹与应用化学联合会(IUPAC)的命名原则,以化学物质的拉丁文名称做基础,从拉丁文引进“前缀”而组成化学物质的蒙文名词。即化学物质的蒙文名词是由前缀、词根和词缀等三种词素来组成其名词。一、前言根据国际纯粹与应用化学联合会(IUPAC)的建议,作为国际性术语的元素名称应采用拉丁文拼写,也就是建议以元素的拉丁文名称作为国际性术语。元素的蒙文名称全部采用拉丁化的蒙文名称之后,对分子(或化学物质)进行蒙文命名时,必然以其拉丁文名称做基础来命名。例如:KOH分子由K钾[kli]、O氧[ksin]、H氢[hidrn]三种元素的原子组成的,因此由这三种元素的名称或其词根组合成该化学物质的蒙文名称也是必然的。其名称如下:KOH氢氧化钾[](kli钾-hidr氢-ks氧-id化物)。如此,从术语学角度用100多种元素的名称或其词根,可以进行3 000多万种化学物质(或分子)蒙文命名。这犹如20多个英文字母,可以书写出所有的英文词一样。另外,上例[]中的[kli]、[hidr]、[ks]和[id]是相当于蒙文词中的“音节”。所以,读蒙文名词时,按其音节的“节奏”读出,否则不太精通化学知识的读者很难确切读出它的蒙文读音。二、化学物质蒙文名词的前缀、词根和词缀蒙古语的化学物质命名,只能依据其拉丁文名称,结合蒙古语名词法中引进“前缀”之新概念进行。(一)部分前缀在传统蒙古语名词法中形成名词的词素成分中,只有词根和词缀两个成分外,没有前缀之成分。但是,化学物质在拉丁文等外文名词的词素成分中,除了词根和词缀等成分外,还有前缀之成分。所以,从拉丁文等外文名词用蒙文转写时,不可避免地要引进“前缀”之新成分,以此区别同类化合物之间的不同结构、组成和类别。例如:1.区别同分异构体的前缀词常见的同分异构体的前缀词有以下三种,如:正-[]、异-[is-]、新-[]等三种。例如:C5H12戊烷[pntn],其三个异构分别为:CH3CH2CH2CH2CH3正戊烷[nrmlpntn]、CH3CH(CH3)CH2CH3异戊烷[ispntn]、C(CH3)4新戊烷[npntn]。2.一种元素产生的无机酸其组成不同时,就可采用偏[mt]、原或正[rt]、焦[pir]、连或次[xip]、过或高[pr]、重[di]、叠[xidr]、连多[pli]等前缀来区分它们。例如:H2SO4硫酸[]H2SO2次硫酸[]H2S2O7焦硫酸[]H2SxO6连多硫酸[]H2PO4磷酸[]HPO3偏磷酸[]HClO3氯酸[]HClO4高氯酸[]H2CO3碳酸[]H4CO4原碳酸[]HOCN氰酸[]HONC雷酸[]HN3叠氮酸[]C2CrO4铬酸[]H2CrO7重铬酸[]……3.在同类物质中,据其结构和组成不同而分成小类时,以不同前缀词来分小类。例如:脂环烃[](li脂-tsik环-lk烃)杂环烃[](l杂-tsik环-lk烃)桥环烃[](桥-tsik环-lk烃)螺环烃[](螺-tsik环-lk烃)集合环烃[](集合-tsik环-lk烃)稠环烃[](稠-tsik环-lk烃)。为了对化学物质的蒙文名词更加蒙文化而尽可能使用固有蒙文词汇做前缀词。如上例中的[l]、[]、[]、[]、[]等。(二)部分词根化学物质的数量庞大、种类繁多、结构复杂,所以它们名词的词根也是多种多样的,主要有以下几个类型:1.以元素名称或其词根做化学物质名词的词根。例如:碳化物[krbid](krb碳-id化物)铁化物[frid](fr铁-id化物)硫化物[slfid](slf硫-id化物)氯化物[hlrid](hlr氯-id化物)……2.以烃名称做词根。例如:CnH2n+2烷烃[lkn](lk烃-n烷)CnH2n烯烃[lkn](lk烃-n烯)CnH2n-n炔烃[lkin](lk烃-in炔)CH3OH甲醇[mtnl](mtn甲<烷>-l醇)HCHO甲醛[mtnl](mtn甲<烷>-l醛)。3.以表示有机化合物分子中碳原子个数的数词做词根。例如:CH4甲烷[mtn](mt甲-n烷)CH3CH3乙烷[tn](t乙-n烷)CH2=CH2乙烯[tn](t乙-n烯)C6H12O6己糖[hkss](hks己-s糖)。(三)部分词缀在传统蒙古语名词法中形成名词的词缀,只有形成名词的功能,而没独立词义。但是,化学物质名词的词缀,不仅含有形成名词的功能,而且都含有独立的词义。例如:-id(化<合>物)、-n(烷)、-n(烯)、-in(炔)、-t(根)、-il(基)、-l(醇)、-l(醛)、-(羧)、-min(胺)、-s(糖)……1.化合物[kmbnd]一词是总称,表示具体化合物的词缀是[-id化物]。在命名具体化合物时,以相关名词连缀[-id化物]来命名。例如:NaCl氯化钠[ntrihlrid](ntri钠-hlr氯-id化物)NaOH氢氧化钠[ntrihidrksid](ntri钠-hidr氢-ks氧-id化物)……2.CnHm碳氢化合物[krbhidrid]的简称叫做烃[lk]。在烃类化合物中主要包括CnH2n+2烷烃[lkn]、CnH2n烯烃[lkn]、CnH2n-2炔烃[lkin]等三类化合物。在这三类化合物中,表示其具体化合物的词缀分别是[-n烷]、[-n烯]、[-in炔]等。例如:CH3CH2CH2CH3丁烷[btn](bt丁-n烷)CH2=CHCH2CH3丁烯[btn](bt丁-n烯)CHC—CH2CH3丁炔[btin](bt丁-in炔)……3.在化合物分子中所含具有一定功能的原子团总称为基团[rdikl]。这个原子团,若以电价[lktrn wlnt]与其他组分结合者称为根[-t]。若以共价[kwlnt]与其他组分结合者称为基[-il]。分别举例说明如下:(1)词缀:[-t根]常见的根[-t]是酸根[](酸-t根)。在无机盐[inrnit]、有机盐[rnit]和酯[str]三类化合物分子中都含有相关的酸根[],所以命名这三类化合物时,都使用同一种词缀[-t根]来命名。①无机盐[inrnit](inrni无机-t盐<或根>)的命名H2CO3碳酸[]分子中的CO2-3叫做碳酸根[krbnt](krbn碳<酸>-t根]阴离子[nijn]与Ca2+阳离子[ktijn]结合生成属盐类化合物CaCO3碳酸钙[kltsikrbnt](kltsi钙-krbn碳<酸>-t盐<或根>)如上例碳酸钙是由金属(Ca2+)的名称和碳酸根(CO2-3)的名称结合而形成其盐(碳酸钙)的蒙文名称。其他盐类化合物也都由金属原子和相关酸根结合而成的,所以对它们的命名与上例相同。例如:H2SO4硫酸[]硫酸根[slfrt](slfr硫<酸>-t根)Na2SO4硫酸钠[ntrislfrt](ntri钠-slfr硫<酸>-t根<或盐>)。②有机盐[rnit](rni有机-t盐<或根>)的命名R—COOH羧酸[]分子中的R—COO-叫做羧酸根[krbksilt](krbksil羧<酸>-t根)。若羧酸根阴离子和Na+阳离子结合生成R—COONa羧酸钠[ntrikrbksilt](ntri钠-krbksil羧<酸>-t盐<或根>),它属有机盐[rnit]。其他有机盐举例如下:H—COOH甲酸[](mtn甲<烷>-羧酸)H—COO-甲酸根[mtnjt](mtn甲<烷>-羧-t根)H—COONa甲酸钠[ntrimtnjt](ntri钠-mtn甲<烷>-羧-t盐<或根>)。③酯[str]的命名R—COO羧酸根[krbksilt]与—CH3甲基[mtil],用共价键结合而生成酯类化合物,即羧酸甲酯[mtilkrbksilt](mtil甲<基>-krbksil羧<酸>-t酯<或根>)。上述无机盐、有机盐和酯等三类化合物分子组成中都含有相关酸的酸根[]。所以命名它们时,都采用相应酸根做词缀[t酸根]来命名。其词缀都是[-t根]。(2)词缀:[-il基]从化合物分子中去掉原子或原子团而不显电荷的剩余的基团[rdikl]叫做该化合物的基[-il]。命名具体基时,相应化合物的名称或其词根连缀[-il基]来命名。例如:①部分烃基(R—)[lkil](lk烃-il基)CnH2n+1—烷烃基[lknil](lkn烷烃-il基)RCH2—烷基[nil](n烷-il基)CH3(CH2)2CH2—丁基[btil](bt丁-il基)CnH2n-1烯烃基[lknil](lkn烯烃-il基)RCH=CH—烯基[nil](n烯-il基)CH2=CHCH2CH2—丁烯基[btnil](btn丁烯-il基)CnH2n-3—炔烃基[lkinil](lkin炔烃-il基)RCC—炔基[inil](in炔-il基)CHC CH2CH2—丁炔基[btinil](btin丁炔-il基)……②部分芳基(Ar-)[ril](r芳-il基)Ar—H称芳烃[rn或rmti](r是rn的词根),Ar-叫做芳基[ril](r芳-il基)。其他芳基举例如下:C6H5—苯基[fnil或bndznil](fn苯-il基或bndzn苯-il基)C10H7—萘基[nftil](nft萘-il基)C14H9—蒽基[ntril](ntr蒽-il基)C6H5CH2苄基[bndzil](bndz苄-il基)C6H5CH2—苄基或苯甲基[fnilmtil](fnil苯<基>-mt甲-il基)③烃氧基[lkksil]—O—氧基[ksil](ks氧-il基)RO—烃氧基[lkksil](lk烃-ks氧-il基)RCH2O—烷氧基[nksil](n烷-ks氧-il基)RCH=CHO—烯氧基[nksil](n烯-ks氧-il基)RCCO—炔氧基[inksil](in炔-ks氧-il基)C—O—C桥氧基[](桥-ks氧-il基)CH3O—甲氧基[mtksil](mt甲-ks氧-il基)④酰基[tsil]RCO—叫做酰基[tsil],它是总称。命名具体的酰基时,在相应化合物名称连缀[-il酰基]来命名。例如:H—CO—甲酰基(或称醛基)[mtnil或frmil](mtn甲<烷>-il酰基)CH3—CO—乙酰基[tnil](tn乙<烷>-il酰基)⑤羧基[krbksil]—C碳基[krbil](krb碳-il基)—COOH羧基(或碳氧基)[krbkisil](krb碳-ks氧-il基)=C=O羰基(或酮基)[krbil](krbn羰或碳-il基)—CH2—COOH羧甲基[krbksilmtil](krbksil羧<基>metil甲基)⑥硫基[slfil]—S—硫基[slfil](slf硫-il基)—SH巯基(或氢硫基)[hidrslfil](hidr氢-slf硫-il基)ArS—芳硫基[rilslfil](ril芳<基>-slfil硫基)C—S—C桥硫基[](桥-slfil硫基)—S—S—二硫基[dislfil](di二-slfil硫基)—S—S—S—三硫基[trislfi](tri三-slfil硫基)—Sn—多硫基[plislfil](pli多-slfil硫基)⑦氨基[min(相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号