首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Switching on and off fear by distinct neuronal circuits   总被引:1,自引:0,他引:1  
Herry C  Ciocchi S  Senn V  Demmou L  Müller C  Lüthi A 《Nature》2008,454(7204):600-606
Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.  相似文献   

2.
A role for adult TLX-positive neural stem cells in learning and behaviour   总被引:1,自引:0,他引:1  
Zhang CL  Zou Y  He W  Gage FH  Evans RM 《Nature》2008,451(7181):1004-1007
Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.  相似文献   

3.
Neurogenesis in the adult is involved in the formation of trace memories   总被引:94,自引:0,他引:94  
Shors TJ  Miesegaes G  Beylin A  Zhao M  Rydel T  Gould E 《Nature》2001,410(6826):372-376
The vertebrate brain continues to produce new neurons throughout life. In the rat hippocampus, several thousand are produced each day, many of which die within weeks. Associative learning can enhance their survival; however, until now it was unknown whether new neurons are involved in memory formation. Here we show that a substantial reduction in the number of newly generated neurons in the adult rat impairs hippocampal-dependent trace conditioning, a task in which an animal must associate stimuli that are separated in time. A similar reduction did not affect learning when the same stimuli are not separated in time, a task that is hippocampal-independent. The reduction in neurogenesis did not induce death of mature hippocampal neurons or permanently alter neurophysiological properties of the CA1 region, such as long-term potentiation. Moreover, recovery of cell production was associated with the ability to acquire trace memories. These results indicate that newly generated neurons in the adult are not only affected by the formation of a hippocampal-dependent memory, but also participate in it.  相似文献   

4.
Graded persistent activity in entorhinal cortex neurons   总被引:30,自引:0,他引:30  
Egorov AV  Hamam BN  Fransén E  Hasselmo ME  Alonso AA 《Nature》2002,420(6912):173-178
Working memory represents the ability of the brain to hold externally or internally driven information for relatively short periods of time. Persistent neuronal activity is the elementary process underlying working memory but its cellular basis remains unknown. The most widely accepted hypothesis is that persistent activity is based on synaptic reverberations in recurrent circuits. The entorhinal cortex in the parahippocampal region is crucially involved in the acquisition, consolidation and retrieval of long-term memory traces for which working memory operations are essential. Here we show that individual neurons from layer V of the entorhinal cortex-which link the hippocampus to extensive cortical regions-respond to consecutive stimuli with graded changes in firing frequency that remain stable after each stimulus presentation. In addition, the sustained levels of firing frequency can be either increased or decreased in an input-specific manner. This firing behaviour displays robustness to distractors; it is linked to cholinergic muscarinic receptor activation, and relies on activity-dependent changes of a Ca2+-sensitive cationic current. Such an intrinsic neuronal ability to generate graded persistent activity constitutes an elementary mechanism for working memory.  相似文献   

5.
Experience-dependent representation of visual categories in parietal cortex   总被引:1,自引:0,他引:1  
Freedman DJ  Assad JA 《Nature》2006,443(7107):85-88
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli.  相似文献   

6.
A widespread interest in a long-lasting form of synaptic enhancement in hippocampal circuits has arisen largely because it might reflect the activation of physiological mechanisms that underlie rapid associative learning. As its induction normally requires the 'Hebbian' association of activity on a number of input fibres, we refer to the process as long-term enhancement (LTE) rather than long-term potentiation (LTP), to emphasize its distinction from the ubiquitous, non-associative 'potentiation' phenomena that occur at most synapses, including those exhibiting LTE. Among other evidence that LTE might actually have a role in associative memory is the demonstration that repeated high-frequency stimulation, which saturated the inducible LTE, caused a severe deficit in spatial learning, although it had no effect on well established spatial memory. These results were consistent with a widespread view that information need only temporarily be stored in the hippocampal formation in order for long-term memories to be established in neocortical circuits. In this context, it is important to understand whether the possible underlying synaptic changes are of a permanent character, or are relatively transient. A second question is whether the actual cause of the observed learning deficit is the distruption of the synaptic weight distribution, and/or the limitation of further synaptic change, which presumably results from experimental saturation of the LTE mechanism. Alternatively, the deficit could be a consequence of some unobserved secondary effect of the high-frequency electrical stimulation. Here we demonstrate that learning capacity recovers in about the same time that it takes LTE to decay, which strongly favours the first possibility and supports the idea that LTE-like processes actually underlie associative memory.  相似文献   

7.
Le Masson G  Renaud-Le Masson S  Debay D  Bal T 《Nature》2002,417(6891):854-858
Sensory information reaches the cerebral cortex through the thalamus, which differentially relays this input depending on the state of arousal. Such 'gating' involves inhibition of the thalamocortical relay neurons by the reticular nucleus of the thalamus, but the underlying mechanisms are poorly understood. We reconstructed the thalamocortical circuit as an artificial and biological hybrid network in vitro. With visual input simulated as retinal cell activity, we show here that when the gain in the thalamic inhibitory feedback loop is greater than a critical value, the circuit tends towards oscillations -- and thus imposes a temporal decorrelation of retinal cell input and thalamic relay output. This results in the functional disconnection of the cortex from the sensory drive, a feature typical of sleep states. Conversely, low gain in the feedback inhibition and the action of noradrenaline, a known modulator of arousal, converge to increase input output correlation in relay neurons. Combining gain control of feedback inhibition and modulation of membrane excitability thus enables thalamic circuits to finely tune the gating of spike transmission from sensory organs to the cortex.  相似文献   

8.
Koralek AC  Jin X  Long JD  Costa RM  Carmena JM 《Nature》2012,483(7389):331-335
The ability to learn new skills and perfect them with practice applies not only to physical skills but also to abstract skills, like motor planning or neuroprosthetic actions. Although plasticity in corticostriatal circuits has been implicated in learning physical skills, it remains unclear if similar circuits or processes are required for abstract skill learning. Here we use a novel behavioural task in rodents to investigate the role of corticostriatal plasticity in abstract skill learning. Rodents learned to control the pitch of an auditory cursor to reach one of two targets by modulating activity in primary motor cortex irrespective of physical movement. Degradation of the relation between action and outcome, as well as sensory-specific devaluation and omission tests, demonstrate that these learned neuroprosthetic actions are intentional and goal-directed, rather than habitual. Striatal neurons change their activity with learning, with more neurons modulating their activity in relation to target-reaching as learning progresses. Concomitantly, strong relations between the activity of neurons in motor cortex and the striatum emerge. Specific deletion of striatal NMDA receptors impairs the development of this corticostriatal plasticity, and disrupts the ability to learn neuroprosthetic skills. These results suggest that corticostriatal plasticity is necessary for abstract skill learning, and that neuroprosthetic movements capitalize on the neural circuitry involved in natural motor learning.  相似文献   

9.
In the adult brain, new synapses are formed and pre-existing ones are lost, but the function of this structural plasticity has remained unclear. Learning of new skills is correlated with formation of new synapses. These may directly encode new memories, but they may also have more general roles in memory encoding and retrieval processes. Here we investigated how mossy fibre terminal complexes at the entry of hippocampal and cerebellar circuits rearrange upon learning in mice, and what is the functional role of the rearrangements. We show that one-trial and incremental learning lead to robust, circuit-specific, long-lasting and reversible increases in the numbers of filopodial synapses onto fast-spiking interneurons that trigger feedforward inhibition. The increase in feedforward inhibition connectivity involved a majority of the presynaptic terminals, restricted the numbers of c-Fos-expressing postsynaptic neurons at memory retrieval, and correlated temporally with the quality of the memory. We then show that for contextual fear conditioning and Morris water maze learning, increased feedforward inhibition connectivity by hippocampal mossy fibres has a critical role for the precision of the memory and the learned behaviour. In the absence of mossy fibre long-term potentiation in Rab3a(-/-) mice, c-Fos ensemble reorganization and feedforward inhibition growth were both absent in CA3 upon learning, and the memory was imprecise. By contrast, in the absence of adducin 2 (Add2; also known as β-adducin) c-Fos reorganization was normal, but feedforward inhibition growth was abolished. In parallel, c-Fos ensembles in CA3 were greatly enlarged, and the memory was imprecise. Feedforward inhibition growth and memory precision were both rescued by re-expression of Add2 specifically in hippocampal mossy fibres. These results establish a causal relationship between learning-related increases in the numbers of defined synapses and the precision of learning and memory in the adult. The results further relate plasticity and feedforward inhibition growth at hippocampal mossy fibres to the precision of hippocampus-dependent memories.  相似文献   

10.
Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.  相似文献   

11.
Froemke RC  Merzenich MM  Schreiner CE 《Nature》2007,450(7168):425-429
Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.  相似文献   

12.
K W Nordeen  E J Nordeen 《Nature》1988,334(6178):149-151
Many birds learn song during a restricted 'sensitive' period. Juveniles memorize a song model, and then learn the pattern of muscle contractions necessary to reproduce the song. Of the neural changes accompanying avian song learning, perhaps the most remarkable is the production of new neurons which are inserted into the hyperstriatum ventralis pars caudalis (HVc), a region critical for song production. We report here that in young male zebra finches many of the new neurons incorporated into the HVc innervate the robust nucleus of the archistriatum (RA) which projects to motor neurons controlling the vocal musculature. Furthermore, far fewer of these new neurons are incorporated into the HVc of either adult males that are beyond the sensitive learning period, or young females (who do not develop song). Thus, a major portion of the vocal motor pathway is actually created during song learning. This may enable early sensory experience and vocal practice to not only modify existing neuronal circuits, but also shape the insertion and initial synaptic contacts of neurons controlling adult song.  相似文献   

13.
Neuser K  Triphan T  Mronz M  Poeck B  Strauss R 《Nature》2008,453(7199):1244-1247
Flexible goal-driven orientation requires that the position of a target be stored, especially in case the target moves out of sight. The capability to retain, recall and integrate such positional information into guiding behaviour has been summarized under the term spatial working memory. This kind of memory contains specific details of the presence that are not necessarily part of a long-term memory. Neurophysiological studies in primates indicate that sustained activity of neurons encodes the sensory information even though the object is no longer present. Furthermore they suggest that dopamine transmits the respective input to the prefrontal cortex, and simultaneous suppression by GABA spatially restricts this neuronal activity. Here we show that Drosophila melanogaster possesses a similar spatial memory during locomotion. Using a new detour setup, we show that flies can remember the position of an object for several seconds after it has been removed from their environment. In this setup, flies are temporarily lured away from the direction towards their hidden target, yet they are thereafter able to aim for their former target. Furthermore, we find that the GABAergic (stainable with antibodies against GABA) ring neurons of the ellipsoid body in the central brain are necessary and their plasticity is sufficient for a functional spatial orientation memory in flies. We also find that the protein kinase S6KII (ignorant) is required in a distinct subset of ring neurons to display this memory. Conditional expression of S6KII in these neurons only in adults can restore the loss of the orientation memory of the ignorant mutant. The S6KII signalling pathway therefore seems to be acutely required in the ring neurons for spatial orientation memory in flies.  相似文献   

14.
T F Freund  M Antal 《Nature》1988,336(6195):170-173
The hippocampus, in particular the neocortex-hippocampus-neocortex circuit, is widely believed to be crucial in memory. Information flow in this circuit is strongly influenced by relatively sparse afferents derived from subcortical centres, such as the septum, involved in arousal, emotions and autonomic control. A powerful mechanism, by which numerically small inputs can produce profound effects, is feed-forward inhibition, that is, the activation of local inhibitory interneurons, which, in turn, control the activity of large populations of principal cells in the hippocampus. An example is the cholinergic input to the hippocampus from the septum, which is likely to be involved in feed-forward operations. Here, we demonstrate the existence of a circuit underlying another powerful mechanism of subcortical control of hippocampal information processing. We show that GABA-containing afferents originating in the septum innervate most of the GABA-containing interneurons in the hippocampus, making many synaptic contacts with each of them. Activation of the GABA-containing neurons in the septum is likely to lead to disinhibition of the principal neurons in the hippocampal formation and so this pathway is probably crucial in the induction of hippocampal electrical activity patterns, and may be involved in NMDA (N-methyl-D-aspartate) receptor-mediated functions, such as memory, in a permissive manner.  相似文献   

15.
提出两种基于竞争的神经网络联想存储器学习算法—CC算法和ACC算法 ,并证明算法得到的神经网络对任一输入模式的竞争收敛性 ,由CC算法得到的网络 ,利用 p n个神经元存储p个n维样本模式 ;每个样本点都是吸引中心 ,不存在假吸引中心 ;对任一输入模式 ,总被吸引到与之海明距离最小的样本点上 ;不产生拒识点 .ACC算法是CC算法的改进形式 ,所得网络可在自适应学习中收敛 ,竞争次数较CC算法大大降低 本文算法得到的网络在存储容量、容错能力方面好于Hopfield联想存储器及作为联想存储器使用的BP网络 .  相似文献   

16.
Ofstad TA  Zuker CS  Reiser MB 《Nature》2011,474(7350):204-207
The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. The impressive navigational abilities of ants, bees, wasps and other insects demonstrate that insects are capable of visual place learning, but little is known about the underlying neural circuits that mediate these behaviours. Drosophila melanogaster (common fruit fly) is a powerful model organism for dissecting the neural circuitry underlying complex behaviours, from sensory perception to learning and memory. Drosophila can identify and remember visual features such as size, colour and contour orientation. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain, we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and establish Drosophila as a powerful model for the study of spatial memories.  相似文献   

17.
Barnes TD  Kubota Y  Hu D  Jin DZ  Graybiel AM 《Nature》2005,437(7062):1158-1161
Learning to perform a behavioural procedure as a well-ingrained habit requires extensive repetition of the behavioural sequence, and learning not to perform such behaviours is notoriously difficult. Yet regaining a habit can occur quickly, with even one or a few exposures to cues previously triggering the behaviour. To identify neural mechanisms that might underlie such learning dynamics, we made long-term recordings from multiple neurons in the sensorimotor striatum, a basal ganglia structure implicated in habit formation, in rats successively trained on a reward-based procedural task, given extinction training and then given reacquisition training. The spike activity of striatal output neurons, nodal points in cortico-basal ganglia circuits, changed markedly across multiple dimensions during each of these phases of learning. First, new patterns of task-related ensemble firing successively formed, reversed and then re-emerged. Second, task-irrelevant firing was suppressed, then rebounded, and then was suppressed again. These changing spike activity patterns were highly correlated with changes in behavioural performance. We propose that these changes in task representation in cortico-basal ganglia circuits represent neural equivalents of the explore-exploit behaviour characteristic of habit learning.  相似文献   

18.
Harris KD  Csicsvari J  Hirase H  Dragoi G  Buzsáki G 《Nature》2003,424(6948):552-556
Neurons can produce action potentials with high temporal precision. A fundamental issue is whether, and how, this capability is used in information processing. According to the 'cell assembly' hypothesis, transient synchrony of anatomically distributed groups of neurons underlies processing of both external sensory input and internal cognitive mechanisms. Accordingly, neuron populations should be arranged into groups whose synchrony exceeds that predicted by common modulation by sensory input. Here we find that the spike times of hippocampal pyramidal cells can be predicted more accurately by using the spike times of simultaneously recorded neurons in addition to the animals location in space. This improvement remained when the spatial prediction was refined with a spatially dependent theta phase modulation. The time window in which spike times are best predicted from simultaneous peer activity is 10-30 ms, suggesting that cell assemblies are synchronized at this timescale. Because this temporal window matches the membrane time constant of pyramidal neurons, the period of the hippocampal gamma oscillation and the time window for synaptic plasticity, we propose that cooperative activity at this timescale is optimal for information transmission and storage in cortical circuits.  相似文献   

19.
Y Miyashita  H S Chang 《Nature》1988,331(6151):68-70
It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery. Lesions in this area also affect recognition of an object after a delay in both humans and monkeys, indicating a role in short-term memory of images. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily. But neuronal responses selective to specific complex objects, including hands and faces, cease soon after the offset of stimulus presentation. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.  相似文献   

20.
Kwon HB  Sabatini BL 《Nature》2011,474(7349):100-104
Mature cortical pyramidal neurons receive excitatory inputs onto small protrusions emanating from their dendrites called spines. Spines undergo activity-dependent remodelling, stabilization and pruning during development, and similar structural changes can be triggered by learning and changes in sensory experiences. However, the biochemical triggers and mechanisms of de novo spine formation in the developing brain and the functional significance of new spines to neuronal connectivity are largely unknown. Here we develop an approach to induce and monitor de novo spine formation in real time using combined two-photon laser-scanning microscopy and two-photon laser uncaging of glutamate. Our data demonstrate that, in mouse cortical layer 2/3 pyramidal neurons, glutamate is sufficient to trigger de novo spine growth from the dendrite shaft in a location-specific manner. We find that glutamate-induced spinogenesis requires opening of NMDARs (N-methyl-D-aspartate-type glutamate receptors) and activation of protein kinase A (PKA) but is independent of calcium-calmodulin-dependent kinase II (CaMKII) and tyrosine kinase receptor B (TrkB) receptors. Furthermore, newly formed spines express glutamate receptors and are rapidly functional such that they transduce presynaptic activity into postsynaptic signals. Together, our data demonstrate that early neural connectivity is shaped by activity in a spatially precise manner and that nascent dendrite spines are rapidly functionally incorporated into cortical circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号