首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Therapeutic cloning, whereby somatic cell nuclear transfer (SCNT) is used to generate patient-specific embryonic stem cells (ESCs) from blastocysts cloned by nuclear transfer (ntESCs), holds great promise for the treatment of many human diseases. ntESCs have been derived in mice and cattle, but thus far there are no credible reports of human ntESCs. Here we review the recent literature on nuclear reprogramming by SCNT, including studies of gene expression, DNA methylation, chromatin remodeling, genomic imprinting and X chromosome inactivation. Reprogramming of genes expressed in the inner cell mass, from which ntESCs are derived, seems to be highly efficient. Defects in the extraembryonic lineage are probably the major cause of the low success rate of reproductive cloning but are not expected to affect the derivation of ntESCs. We remain optimistic that human therapeutic cloning is achievable and that the derivation of patient-specific ntESC lines will have great potential for regenerative medicine.  相似文献   

2.
The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or "ORFeomes," need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.  相似文献   

3.
Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate from a Hawaiian island that shows a uniformly high density of polymorphisms compared with the reference Bristol N2 strain. Based on 5.4 Mbp of aligned sequences, we predicted 6,222 polymorphisms. Furthermore, 3,457 of these markers modify restriction enzyme recognition sites ('snip-SNPs') and are therefore easily detected as RFLPs. Of these, 493 were experimentally confirmed by restriction digest to produce a snip-SNP map of the worm genome. A mapping strategy using snip-SNPs and bulked segregant analysis (BSA) is outlined. CB4856 is crossed into a mutant strain, and exclusion of CB4856 alleles of a subset of snip-SNPs in mutant progeny is assessed with BSA. The proximity of a linked marker to the mutation is estimated by the relative proportion of each form of the biallelic marker in populations of wildtype and mutant genomes. The usefulness of this approach is illustrated by the rapid mapping of the dyf-5 gene.  相似文献   

4.
Combinatorial microRNA target predictions   总被引:59,自引:0,他引:59  
  相似文献   

5.
Aberrant methylation of CpG islands and genomic deletion are two predominant mechanisms of gene inactivation in tumorigenesis, but the extent to which they interact is largely unknown. The lack of an integrated approach to study these mechanisms has limited the understanding of tumor genomes and cancer genes. Restriction landmark genomic scanning (RLGS; ref. 1) is useful for global analysis of aberrant methylation of CpG islands, but has not been amenable to alignment with deletion maps because the identity of most RLGS fragments is unknown. Here, we determined the nucleotide sequence and exact chromosomal position of RLGS fragments throughout the genome using the whole chromosome of origin of the fragments and in silico restriction digestion of the human genome sequence. To study the interaction of these gene-inactivation mechanisms in primary brain tumors, we integrated RLGS-based methylation analysis with high-resolution deletion maps from microarray-based comparative genomic hybridization (array CGH; ref. 3). Certain subsets of gene-associated CpG islands were preferentially affected by convergent methylation and deletion, including genes that exhibit tumor-suppressor activity, such as CISH1 (encoding SOCS1; ref. 4), as well as genes such as COE3 that have been missed by traditional non-integrated approaches. Our results show that most aberrant methylation events are focal and independent of deletions, and the rare convergence of these mechanisms can pinpoint biallelic gene inactivation without the use of positional cloning.  相似文献   

6.
Cloning procedures aided by homology searches of EST databases have accelerated the pace of discovery of new genes, but EST database searching remains an involved and onerous task. More than 1.6 million human EST sequences have been deposited in public databases, making it difficult to identify ESTs that represent new genes. Compounding the problems of scale are difficulties in detection associated with a high sequencing error rate and low sequence similarity between distant homologues. We have developed a new method, coupling BLAST-based searches with a domain identification protocol, that filters candidate homologues. Application of this method in a large-scale analysis of 100 signalling domain families has led to the identification of ESTs representing more than 1,000 novel human signalling genes. The 4,206 publicly available ESTs representing these genes are a valuable resource for rapid cloning of novel human signalling proteins. For example, we were able to identify ESTs of at least 106 new small GTPases, of which 6 are likely to belong to new subfamilies. In some cases, further analyses of genomic DNA led to the discovery of previously unidentified full-length protein sequences. This is exemplified by the in silico cloning (prediction of a gene product sequence using only genomic and EST sequence data) of a new type of GTPase with two catalytic domains.  相似文献   

7.
Using a positional cloning approach supported by comparative genomics, we have identified a previously unreported gene, EYS, at the RP25 locus on chromosome 6q12 commonly mutated in autosomal recessive retinitis pigmentosa. Spanning over 2 Mb, this is the largest eye-specific gene identified so far. EYS is independently disrupted in four other mammalian lineages, including that of rodents, but is well conserved from Drosophila to man and is likely to have a role in the modeling of retinal architecture.  相似文献   

8.
High-resolution mapping of quantitative trait loci in outbred mice   总被引:21,自引:0,他引:21  
Screening the whole genome of a cross between two inbred animal strains has proved to be a powerful method for detecting genetic loci underlying quantitative behavioural traits, but the level of resolution offered by quantitative trait loci (QTL) mapping is still too coarse to permit molecular cloning of the genetic determinants. To achieve high-resolution mapping, we used an outbred stock of mice for which the entire genealogy is known. The heterogeneous stock (HS) was established 30 years ago from an eight-way cross of C57BL/6, BALB/c, RIII, AKR, DBA/2, I, A/J and C3H inbred mouse strains. At the time of the experiment reported here, the HS mice were at generation 58, theoretically offering at least a 30-fold increase in resolution for QTL mapping compared with a backcross or an F2 intercross. Using the HS mice we have mapped a QTL influencing a psychological trait in mice to a 0.8-cM interval on chromosome 1. This method allows simultaneous fine mapping of multiple QTLs, as shown by our report of a second QTL on chromosome 12. The high resolution possible with this approach makes QTLs accessible to positional cloning.  相似文献   

9.
A radiation hybrid map of the zebrafish genome.   总被引:12,自引:0,他引:12  
Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.  相似文献   

10.
11.
Proper serum phosphate concentrations are maintained by a complex and poorly understood process. Identification of genes responsible for inherited disorders involving disturbances in phosphate homeostasis may provide insight into the pathways that regulate phosphate balance. Several hereditary disorders of isolated phosphate wasting have been described, including X-linked hypophosphataemic rickets (XLH), hypophosphataemic bone disease (HBD), hereditary hypophosphataemic rickets with hypercalciuria (HHRH) and autosomal dominant hypophosphataemic rickets (ADHR). Inactivating mutations of the gene PHEX, encoding a member of the neutral endopeptidase family of proteins, are responsible for XLH (refs 6,7). ADHR (MIM 193100) is characterized by low serum phosphorus concentrations, rickets, osteomalacia, lower extremity deformities, short stature, bone pain and dental abscesses. Here we describe a positional cloning approach used to identify the ADHR gene which included the annotation of 37 genes within 4 Mb of genomic sequence. We identified missense mutations in a gene encoding a new member of the fibroblast growth factor (FGF) family, FGF23. These mutations in patients with ADHR represent the first mutations found in a human FGF gene.  相似文献   

12.
To test the hypothesis that the human genome project will uncover many genes not previously discovered by sequencing of expressed sequence tags (ESTs), we designed and produced a set of microarrays using probes based on open reading frames (ORFs) in 350 Mb of finished and draft human sequence. Our approach aims to identify all genes directly from genomic sequence by querying gene expression. We analysed genomic sequence with a suite of ORF prediction programs, selected approximately one ORF per gene, amplified the ORFs from genomic DNA and arrayed the amplicons onto treated glass slides. Of the first 10,000 arrayed ORFs, 31% are completely novel and 29% are similar, but not identical, to sequences in public databases. Approximately one-half of these are expressed in the tissues we queried by microarray. Subsequent verification by other techniques confirmed expression of several of the novel genes. Expressed sequence tags (ESTs) have yielded vast amounts of data, but our results indicate that many genes in the human genome will only be found by genomic sequencing.  相似文献   

13.
Péterfy M  Phan J  Xu P  Reue K 《Nature genetics》2001,27(1):121-124
Mice carrying mutations in the fatty liver dystrophy (fld) gene have features of human lipodystrophy, a genetically heterogeneous group of disorders characterized by loss of body fat, fatty liver, hypertriglyceridemia and insulin resistance. Through positional cloning, we have isolated the gene responsible and characterized two independent mutant alleles, fld and fld(2J). The gene (Lpin1) encodes a novel nuclear protein which we have named lipin. Consistent with the observed reduction of adipose tissue mass in fld and fld(2J)mice, wild-type Lpin1 mRNA is expressed at high levels in adipose tissue and is induced during differentiation of 3T3-L1 pre-adipocytes. Our results indicate that lipin is required for normal adipose tissue development, and provide a candidate gene for human lipodystrophy. Lipin defines a novel family of nuclear proteins containing at least three members in mammalian species, and homologs in distantly related organisms from human to yeast.  相似文献   

14.
15.
16.
The human PAX6 gene is mutated in two patients with aniridia.   总被引:17,自引:0,他引:17  
Aniridia is an inherited ocular disorder of variable expressivity characterized by iris hypoplasia. A candidate aniridia gene, AN, which is the human homologue of the mouse Pax-6 gene, has recently been isolated by positional cloning from the WAGR region of 11p13. Here we describe mutations in this gene in two cases of sporadic aniridia, one detected at the DNA level and one at the RNA level, both of which are predicted to affect protein function. Mutations in Pax-6 have been described previously in Small eye, the proposed mouse model for aniridia. We present new phenotypic evidence for the validity of this mouse model.  相似文献   

17.
Arabidopsis thaliana has emerged as a model system for studies of plant genetics and development, and its genome has been targeted for sequencing by an international consortium (the Arabidopsis Genome Initiative; http://genome-www. stanford.edu/Arabidopsis/agi.html). To support the genome-sequencing effort, we fingerprinted more than 20,000 BACs (ref. 2) from two high-quality publicly available libraries, generating an estimated 17-fold redundant coverage of the genome, and used the fingerprints to nucleate assembly of the data by computer. Subsequent manual revision of the assemblies resulted in the incorporation of 19,661 fingerprinted BACs into 169 ordered sets of overlapping clones ('contigs'), each containing at least 3 clones. These contigs are ideal for parallel selection of BACs for large-scale sequencing and have supported the generation of more than 5.8 Mb of finished genome sequence submitted to GenBank; analysis of the sequence has confirmed the integrity of contigs constructed using this fingerprint data. Placement of contigs onto chromosomes can now be performed, and is being pursued by groups involved in both sequencing and positional cloning studies. To our knowledge, these data provide the first example of whole-genome random BAC fingerprint analysis of a eucaryote, and have provided a model essential to efforts aimed at generating similar databases of fingerprint contigs to support sequencing of other complex genomes, including that of human.  相似文献   

18.
Replication validity of genetic association studies   总被引:27,自引:0,他引:27  
The rapid growth of human genetics creates countless opportunities for studies of disease association. Given the number of potentially identifiable genetic markers and the multitude of clinical outcomes to which these may be linked, the testing and validation of statistical hypotheses in genetic epidemiology is a task of unprecedented scale. Meta-analysis provides a quantitative approach for combining the results of various studies on the same topic, and for estimating and explaining their diversity. Here, we have evaluated by meta-analysis 370 studies addressing 36 genetic associations for various outcomes of disease. We show that significant between-study heterogeneity (diversity) is frequent, and that the results of the first study correlate only modestly with subsequent research on the same association. The first study often suggests a stronger genetic effect than is found by subsequent studies. Both bias and genuine population diversity might explain why early association studies tend to overestimate the disease protection or predisposition conferred by a genetic polymorphism. We conclude that a systematic meta-analytic approach may assist in estimating population-wide effects of genetic risk factors in human disease.  相似文献   

19.
Chronic B-cell lymphoid proliferations are characterised by the presence of multiple recurrent chromosomal aberrations. A certain number of these chromosomal anomalies have been found to represent disease-specific tumour markers : the t(11;14) in mantle cell lymphoma, the t(14;18) in follicular lymphoma and the t(11;18) in lowgrade MALT lymphoma, for instance. These tumour-specific genetic markers are not only useful in patient diagnosis and follow-up, but can also have great prognostic significance. Recent prospective studies in chronic lymphocytic leukaemias have shown that in multivariate analysis, 17p and 11q deletions are the two strongest independant predictors of survival followed by age and RAI stage.The occurrence of common genetic changes in different categories of chronic lymphoid disorders is suggestive of common disease mechanisms in these apparently distinct disease entities. Therefore, it is to be expected that further multidisciplinary studies on these lymphomas would identify other potentially disease- or progression-specific chromosomal aberrations useful for accurate classification.Finally, cytogenetic studies coupled with FISH mapping have already proved instrumental in identifying hot spots of rearrangement in human cancer which in turn have served as chromosomal guides for the cloning of new genes important in oncogenesis or tumour progression.  相似文献   

20.
Systematic efforts are underway to decipher the genetic changes associated with tumor initiation and progression. However, widespread clinical application of this information is hampered by an inability to identify critical genetic events across the spectrum of human tumors with adequate sensitivity and scalability. Here, we have adapted high-throughput genotyping to query 238 known oncogene mutations across 1,000 human tumor samples. This approach established robust mutation distributions spanning 17 cancer types. Of 17 oncogenes analyzed, we found 14 to be mutated at least once, and 298 (30%) samples carried at least one mutation. Moreover, we identified previously unrecognized oncogene mutations in several tumor types and observed an unexpectedly high number of co-occurring mutations. These results offer a new dimension in tumor genetics, where mutations involving multiple cancer genes may be interrogated simultaneously and in 'real time' to guide cancer classification and rational therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号