首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Mueckler  H F Lodish 《Nature》1986,322(6079):549-552
Most eukaryotic secretory and membrane proteins insert co-translationally into the membrane of the rough endoplasmic reticulum (RER), and are targeted there by one or more NH2-terminal or internal signal sequences. However, little is known about the actual translocation and membrane integration processes. In particular, any energy requirements for targeting and integration have remained obscure because of the inability to uncouple the processes from concomitant protein synthesis. We recently showed that the human glucose transporter (GT), an integral membrane glycoprotein, can insert post-translationally into dog pancreatic microsomes with low but demonstrable efficiency in vitro, and that a fragment corresponding to the NH2-terminal 340 amino acids and 8 of the 12 membrane-spanning alpha-helixes of GT (GT-N) can insert with significantly greater efficiency. We report here that post-translational insertion of GT-N into pancreatic microsomes requires energy in the form of a phosphodiester bond, and suggest that co-translational insertion of proteins into the RER may also require energy independent of that used for polypeptide synthesis.  相似文献   

2.
Hydrophobic signal sequences direct the translocation of nascent secretory proteins and many membrane proteins across the membrane of the endoplasmic reticulum. Initiation of this process involves the signal recognition particle (SRP), which consists of six polypeptide chains and a 7S RNA and interacts with ribosomes carrying nascent secretory polypeptide chains. In the case of aminoterminal, cleavable signal sequences, in the absence of microsomal membranes it exerts a site-specific translational arrest in vitro. The size of the arrested fragment (60-70 amino-acid residues) suggests that elongation stops when the signal sequence has emerged fully from the ribosome. However, a direct interaction between the signal sequence and SRP has not previously been demonstrated and has even been questioned recently. We now show for the first time a direct interaction between the signal sequence of a secretory protein and a component of SRP, the 45K polypeptide (relative molecular mass (Mr) 54,000). This was achieved by means of a new method of affinity labelling which involves the translational incorporation of an amino acid, carrying a photoreactive group, into nascent polypeptides.  相似文献   

3.
J Luirink  S High  H Wood  A Giner  D Tollervey  B Dobberstein 《Nature》1992,359(6397):741-743
Hydrophobic signal-sequences direct the transfer of secretory proteins across the inner membrane of prokaryotes and the endoplasmic reticulum membranes of eukaryotes. In mammalian cells, signal-sequences are recognized by the 54K protein (M(r) 54,000) of the signal recognition particle (SRP) which is believed to hold the nascent chain in a translocation-competent conformation until it contacts the endoplasmic reticulum membrane. The SRP consists of a 7S RNA and six different polypeptides. The 7S RNA and the 54K signal-sequence-binding protein (SRP54) of mammalian SRP exhibit strong sequence similarity to the 4.5S RNA and P48 protein (Ffh) of Escherichia coli which form a ribonucleoprotein particle. Depletion of 4.5S RNA or overproduction of P48 causes the accumulation of the beta-lactamase precursor, although not of other secretory proteins. Whether 4.5S RNA and P48 are part of an SRP-like complex with a role in protein export is controversial. Here we show that the P48/4.5S RNA ribonucleoprotein complex interacts specifically with the signal sequence of a nascent secretory protein and therefore is a signal recognition particle.  相似文献   

4.
5.
All living cells require specific mechanisms that target proteins to the cell surface. In eukaryotes, the first part of this process involves recognition in the endoplasmic reticulum of amino-terminal signal sequences and translocation through Sec translocons, whereas subsequent targeting to different surface locations is promoted by internal sorting signals. In bacteria, N-terminal signal sequences promote translocation across the cytoplasmic membrane, which surrounds the entire cell, but some proteins are nevertheless secreted in one part of the cell by poorly understood mechanisms. Here we analyse localized secretion in the Gram-positive pathogen Streptococcus pyogenes, and show that the signal sequences of two surface proteins, M protein and protein F (PrtF), direct secretion to different subcellular regions. The signal sequence of M protein promotes secretion at the division septum, whereas that of PrtF preferentially promotes secretion at the old pole. Our work therefore shows that a signal sequence may contain information that directs the secretion of a protein to one subcellular region, in addition to its classical role in promoting secretion. This finding identifies a new level of complexity in protein translocation and emphasizes the potential of bacterial systems for the analysis of fundamental cell-biological problems.  相似文献   

6.
Garrison JL  Kunkel EJ  Hegde RS  Taunton J 《Nature》2005,436(7048):285-289
The segregation of secretory and membrane proteins to the mammalian endoplasmic reticulum is mediated by remarkably diverse signal sequences that have little or no homology with each other. Despite such sequence diversity, these signals are all recognized and interpreted by a highly conserved protein-conducting channel composed of the Sec61 complex. Signal recognition by Sec61 is essential for productive insertion of the nascent polypeptide into the translocation site, channel gating and initiation of transport. Although subtle differences in these steps can be detected between different substrates, it is not known whether they can be exploited to modulate protein translocation selectively. Here we describe cotransin, a small molecule that inhibits protein translocation into the endoplasmic reticulum. Cotransin acts in a signal-sequence-discriminatory manner to prevent the stable insertion of select nascent chains into the Sec61 translocation channel. Thus, the range of substrates accommodated by the channel can be specifically and reversibly modulated by a cell-permeable small molecule that alters the interaction between signal sequences and the Sec61 complex.  相似文献   

7.
8.
A signal sequence receptor in the endoplasmic reticulum membrane   总被引:3,自引:0,他引:3  
Protein translocation across the endoplasmic reticulum (ER) membrane is triggered at several stages by information contained in the signal sequence. Initially, the signal sequence of a nascent secretory protein upon emergence from the ribosome is recognized by a polypeptide of relative molecular mass 54,000 (Mr54K) which is part of the signal recognition particle (SRP). Binding of SRP may induce a site-specific elongation arrest of translation in vitro. Attachment of the arrested translation complex to the ER membrane is mediated by the SRP-receptor (docking protein) and is accompanied by displacement of the SRP from both the ribosome and the signal sequence. We have investigated the fate of the signal sequence following the disengagement of SRP and its receptor by a crosslinking approach. We report here that the signal sequence of nascent preprolactin, after its release from the SRP, interacts with a newly discovered component, a signal sequence receptor (SSR), which is an integral, glycosylated protein of the rough ER membrane (Mr approximately 35K).  相似文献   

9.
D Vaux  J Tooze  S Fuller 《Nature》1990,345(6275):495-502
Monoclonal antibodies were raised against antibodies to distinct carboxy-terminal KDEL sequences of two soluble, resident endoplasmic reticulum proteins. These anti-idiotype reagents recognize an intrinsic membrane protein with characteristics expected of a receptor responsible for the recognition and return of resident proteins to the endoplasmic reticulum.  相似文献   

10.
C J Stirling  E W Hewitt 《Nature》1992,356(6369):534-537
Translocation of proteins across the endoplasmic reticulum (ER) membrane represents the first step in the eukaryotic secretory pathway. In mammalian cells, the targeting of secretory and membrane protein precursors to the ER is mediated by signal recognition particle (SRP), a cytosolic ribonucleoprotein complex comprising a molecule of 7SL RNA and six polypeptide subunits (relative molecular masses 9, 14, 19, 54, 68 and 72K). In Saccharomyces cerevisiae, a homologue of the 54K subunit (SRP54) co-purifies with a small cytoplasmic RNA, scR1 (refs 4, 5). Genetic data indicate that SRP54 and scR1 are involved in translocation in vivo, suggesting the existence of an SRP-like activity in yeast. Whether this activity requires additional components similar to those found in mammalian SRP is not known. We have recently reported a genetic selection that led to the isolation of a yeast mutant, sec65-1, which is conditionally defective in the insertion of integral membrane proteins into the ER. Here we report the cloning and sequencing of the SEC65 gene, which encodes a 31.2K protein with significant sequence similarity to the 19K subunit of human SRP (SRP19). We also report the cloning of a multicopy suppressor of sec65-1, and its identification as the previously defined SRP54 gene, providing genetic evidence for an interaction between these gene products in vivo.  相似文献   

11.
C A Kumamoto  D B Oliver  J Beckwith 《Nature》1984,308(5962):863-864
Recent studies in a eukaryotic system indicate that a block in secretion can lead to a block in the translation of secretory proteins. This feedback on protein synthesis is thought to be a result of an interaction of the signal recognition particle with the signal sequences of nascent proteins. Genetic studies in the prokaryote Escherichia coli suggest that a complex secretion machinery and a similar feedback mechanism exist. In addition, mutations affecting two genes, secA and secC, thought to encode components of the bacterial secretion machinery, selectively interfere with the synthesis of exported proteins. This selective interference with translation may be a result of recognition by the secretion machinery of signal sequences. If so, alteration of the signal sequence of a particular protein by mutation should eliminate the block in synthesis for that protein. We show here that signal sequence mutants for an exported protein, maltose binding protein, prevent the block in synthesis of this protein in a secA mutant.  相似文献   

12.
J Armstrong  H Niemann  S Smeekens  P Rottier  G Warren 《Nature》1984,308(5961):751-752
In the eukaryotic cell, both secreted and plasma membrane proteins are synthesized at the endoplasmic reticulum, then transported, via the Golgi complex, to the cell surface. Each of the compartments of this transport pathway carries out particular metabolic functions, and therefore presumably contains a distinct complement of membrane proteins. Thus, mechanisms must exist for localizing such proteins to their respective destinations. However, a major obstacle to the study of such mechanisms is that the isolation and detailed analysis of such internal membrane proteins pose formidable technical problems. We have therefore used the E1 glycoprotein from coronavirus MHV-A59 as a viral model for this class of protein. Here we present the primary structure of the protein, determined by analysis of cDNA clones prepared from viral mRNA. In combination with a previous study of its assembly into the endoplasmic reticulum membrane, the sequence reveals several unusual features of the protein which may be related to its intracellular localization.  相似文献   

13.
A role for the two-helix finger of the SecA ATPase in protein translocation   总被引:1,自引:0,他引:1  
Erlandson KJ  Miller SB  Nam Y  Osborne AR  Zimmer J  Rapoport TA 《Nature》2008,455(7215):984-987
An important step in the biosynthesis of many proteins is their partial or complete translocation across the plasma membrane in prokaryotes or the endoplasmic reticulum membrane in eukaryotes. In bacteria, secretory proteins are generally translocated after completion of their synthesis by the interaction of the cytoplasmic ATPase SecA and a protein-conducting channel formed by the SecY complex. How SecA moves substrates through the SecY channel is unclear. However, a recent structure of a SecA-SecY complex raises the possibility that the polypeptide chain is moved by a two-helix finger domain of SecA that is inserted into the cytoplasmic opening of the SecY channel. Here we have used disulphide-bridge crosslinking to show that the loop at the tip of the two-helix finger of Escherichia coli SecA interacts with a polypeptide chain right at the entrance into the SecY pore. Mutagenesis demonstrates that a tyrosine in the loop is particularly important for translocation, but can be replaced by some other bulky, hydrophobic residues. We propose that the two-helix finger of SecA moves a polypeptide chain into the SecY channel with the tyrosine providing the major contact with the substrate, a mechanism analogous to that suggested for hexameric, protein-translocating ATPases.  相似文献   

14.
15.
Chicken ovalbumin contains an internal signal sequence.   总被引:34,自引:0,他引:34  
V R Lingappa  J R Lingappa  G Blobel 《Nature》1979,281(5727):117-121
Ovalbumin is shown to contain an internal rather than an amino-terminal signal sequence. This internal signal can be recovered in a tryptic fragment which comprises residues 229--276 of mature ovalbumin and contains a region of striking sequence homology to amino-terminal cleaved signals of two other oviduct secretory proteins. The isolated tryptic fragment is used as a probe to demonstrate that a signal receptor is present in membrane vesicles derived from the rough but not in those derived from the smooth endoplasmic reticulum.  相似文献   

16.
Rapoport TA 《Nature》2007,450(7170):663-669
A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.  相似文献   

17.
YidC mediates membrane protein insertion in bacteria   总被引:13,自引:0,他引:13  
The basic machinery for the translocation of proteins into or across membranes is remarkably conserved from Escherichia coli to humans. In eukaryotes, proteins are inserted into the endoplasmic reticulum using the signal recognition particle (SRP) and the SRP receptor, as well as the integral membrane Sec61 trimeric complex (composed of alpha, beta and gamma subunits). In bacteria, most proteins are inserted by a related pathway that includes the SRP homologue Ffh, the SRP receptor FtsY, and the SecYEG trimeric complex, where Y and E are related to the Sec61 alpha and gamma subunits, respectively. Proteins in bacteria that exhibit no dependence on the Sec translocase were previously thought to insert into the membrane directly without the aid of a protein machinery. Here we show that membrane insertion of two Sec-independent proteins requires YidC. YidC is essential for E. coli viability and homologues are present in mitochondria and chloroplasts. Depletion of YidC also interferes with insertion of Sec-dependent membrane proteins, but it has only a minor effect on the export of secretory proteins. These results provide evidence for an additional component of the translocation machinery that is specialized for the integration of membrane proteins.  相似文献   

18.
The signal recognition particle (SRP) receptor is an integral membrane protein of the endoplasmic reticulum which, in conjunction with SRP, ensures the correct targeting of nascent secretory proteins to this membrane system. From the complementary DNA sequence we have deduced the complete primary structure of the SRP receptor and established that its amino-terminal region is anchored in the membrane. The anchor fragment and the cytoplasmic fragment contribute jointly to a functionally important region which is highly charged and may function in nucleic acid binding.  相似文献   

19.
There is a debate over how protein trafficking is performed through the Golgi apparatus. In the secretory pathway, secretory proteins that are synthesized in the endoplasmic reticulum enter the early compartment of the Golgi apparatus called cis cisternae, undergo various modifications and processing, and then leave for the plasma membrane from the late (trans) cisternae. The cargo proteins must traverse the Golgi apparatus in the cis-to-trans direction. Two typical models propose either vesicular transport or cisternal progression and maturation for this process. The vesicular transport model predicts that Golgi cisternae are distinct stable compartments connected by vesicular traffic, whereas the cisternal maturation model predicts that cisternae are transient structures that form de novo, mature from cis to trans, and then dissipate. Technical progress in live-cell imaging has long been awaited to address this problem. Here we show, by the use of high-speed three-dimensional confocal microscopy, that yeast Golgi cisternae do change the distribution of resident membrane proteins from the cis nature to the trans over time, as proposed by the maturation model, in a very dynamic way.  相似文献   

20.
C M Alberini  P Bet  C Milstein  R Sitia 《Nature》1990,347(6292):485-487
There are several demonstrations that misfolded or unassembled proteins are not transported along the secretory pathway, but are retained intracellularly, generally in the endoplasmic reticulum. For instance, B lymphocytes synthesize but do not secrete IgM, and only the polymeric form of IgM is secreted by plasma cells. The C-terminal cysteine of the mu heavy chain of secreted IgM (residue 575) is involved in the intracellular retention of unpolymerized IgM subunits. Here we report that the addition of reducing agents to the culture medium, at concentrations which do not affect cell viability, terminal glycosylation, or retention of proteins in the endoplasmic reticulum through the KDEL mechanism, induces secretion of IgM assembly intermediates by both B and plasma cells. Free joining (J) chains, which are not normally secreted by plasma cells unless as part of IgM or IgA, are also secreted in the presence of reducing agents. We propose a role for free thiol groups in preventing the unhindered transport of proteins through the secretory pathway. Under the scheme, assembly intermediates interact through their thiol groups between themselves and/or with unknown proteins of the endoplasmic reticulum. Such interactions may be prevented by altering the intracellular redox potential or by site-directed mutagenesis of the relevant cysteine residue(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号