首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The widespread distribution of insects over many ecological niches is a testimony to their evolutionary success. The colonization of environments at high latitudes or altitudes required the evolution of biochemical strategies that reduced the impact of cold or freezing stress. This review focuses on our current interests in some of the genes and proteins involved in low temperature survival in insects. Although the most widespread form of protection is the synthesis of low molecular weight polyol cryoprotectants, proteins with intrinsic protective properties, such as the thermal hysteresis or antifreeze proteins are also important. These have been cloned and characterized in certain moths and beetles. Molecular techniques allowing the isolation of genes differentially regulated by low temperatures have revealed that heat shock proteins, cold stress proteins, membrane protectants, as well as ice nucleators and other less well characterized proteins likely also play a role in cold hardiness. Received 10 June 2008; received after revision 17 November 2008; accepted 18 November 2008  相似文献   

3.
Temperature is among the most important of the parameters that free-living microbes monitor. Microbial physiology needs to be readjusted in response to sudden temperature changes. When the ambient temperature rises or drops to potentially harmful levels, cells mount protective stress responses—so-called heat or cold shock responses, respectively. Pathogenic microorganisms often respond to a temperature of around 37°C by inducing virulence gene expression. There are two main ways in which temperature can be measured. Often, the consequences of a sudden temperature shift are detected. Such indirect signals are known to be the accumulation of denatured proteins (heat shock) or stalled ribosomes (cold shock). However, this article focuses solely on direct thermosensors. Since the conformation of virtually every biomolecule is susceptible to temperature changes, primary sensors include DNA, RNA, proteins and lipids.  相似文献   

4.
The small heat shock proteins and their clients   总被引:11,自引:0,他引:11  
Small heat shock proteins are ubiquitous proteins found throughout all kingdoms. One of the most notable features is their large oligomeric structures with conserved structural organization. It is well documented that small heat shock proteins can capture unfolding proteins to form stable complexes and prevent their irreversible aggregation. In addition, small heat shock proteins coaggregate with aggregation-prone proteins for subsequent, efficient disaggregation of the protein aggregates. The release of substrate proteins from the transient reservoirs, i.e. complexes and aggregates with small heat shock proteins, and their refolding require cooperation with ATP-dependent chaperone systems. The amphitropic small heat shock proteins were shown to associate with membranes, although they do not contain transmembrane domains or signal sequences. Recent studies indicate that small heat shock proteins play an important role in membrane quality control and thereby potentially contribute to the maintenance of membrane integrity especially under stress conditions. Received 11 July 2006; received after revision 4 October 2006; accepted 10 November 2006  相似文献   

5.
6.
Major alterations in genetic activity have been observed in every organism after exposure to abnormally high temperatures. This phenomenon, called the heat shock response, was discovered in the fruit flyDrosophila. Studies with this organism led to the discovery of the heat shock proteins, whose genes were among the first eukaryotic genes to be cloned. Several of the most important aspects of the regulation of the heat shock response and of the functions of the heat shock proteins have been unraveled inDrosophila.  相似文献   

7.
Bacterial cold-shock proteins   总被引:13,自引:0,他引:13  
  相似文献   

8.
The effect of heat shock on protein synthesis in three relatedDrosophila species belonging to theobscura group was analyzed on SDS-acrylamide gels. Four major heat shock proteins (hsps) were found in these species, in which synthesis reaches a maximum at 34°C. Although the higher molecular weight proteins are conserved, differences in size were found for the small hsps in these species. By means of in situ hybridization usingD. melanogaster probes for the small hsp genes, it was inferred that the small hsp genes of theobscura group species are clustered at the 27A locus in all three species.  相似文献   

9.
Heat shock protein gene expression during Xenopus development   总被引:2,自引:0,他引:2  
Stress-induced heat shock protein gene expression is developmentally regulated during early embryogen esis of the frog, Xenopus laevis. For example, a number of heat shock protein genes, such as hsp70, hsp90, and ubiquitin are not heat-inducible until after the midblastula stage of embryogenesis. Furthermore, the family of small heat shock protein genes, hsp30, are differentially expressed after the midblastula stage as well as being regulated at the level of mRNA stability. Many of these stress proteins are also synthesized constitutively during oogenesis and embryogenesis during which they may act as molecular chaperones as well as being involved in sequestering proteins in an inactive state until required by the developing embryo. Furthermore the induction of these stress protein genes has been correlated with enhanced thermoresistance. During stressful conditions heat shock proteins probably prevent aggregation or misfolding of damaged protei ns within the embryo.  相似文献   

10.
11.
DnaJ/Hsp40 (heat shock protein 40) proteins have been preserved throughout evolution and are important for protein translation, folding, unfolding, translocation, and degradation, primarily by stimulating the ATPase activity of chaperone proteins, Hsp70s. Because the ATP hydrolysis is essential for the activity of Hsp70s, DnaJ/Hsp40 proteins actually determine the activity of Hsp70s by stabilizing their interaction with substrate proteins. DnaJ/Hsp40 proteins all contain the J domain through which they bind to Hsp70s and can be categorized into three groups, depending on the presence of other domains. Six DnaJ homologs have been identified in Escherichia coli and 22 in Saccharomyces cerevisiae. Genome-wide analysis has revealed 41 DnaJ/Hsp40 family members (or putative members) in humans. While 34 contain the typical J domains, 7 bear partially conserved J-like domains, but are still suggested to function as DnaJ/ Hsp40 proteins. DnaJA2b, DnaJB1b, DnaJC2, DnaJC20, and DnaJC21 are named for the first time in this review; all other human DnaJ proteins were dubbed according to their gene names, e.g. DnaJA1 is the human protein named after its gene DNAJA1. This review highlights the progress in studying the domains in DnaJ/Hsp40 proteins, introduces the mechanisms by which they interact with Hsp70s, and stresses their functional diversity. Received 27 April 2006; received after revision 5 June 2006; accepted 19 July 2006  相似文献   

12.
Ehrlich carcinoma and EL-4 thymoma ascites cells were subjected in vitro to heat shock, ATP depletion, oxidative stress, Ca2+ overlading and iodoacetamide treatment. After the transient stresses, Triton (X-100)-insoluble TIS) fractions were isolated from the cells and analysed by electrophoresis and immunoblotting. All stresses used caused rapid aggregation of cell proteins. This was manifested in a signficant rise in protein content in the TIS fractions. The protein increase was mostly due to and increase in the insolubility of actin, 57 kDa protein of intermediate filaments, 70 kDa heat shock protein (HSP 70), and some specific proteins whose insolubilization was a characteristic sign for each type of cell injury. Different survival rates in the cell lines after either stress corrlated well with differences in their TIS protein accretion. Possible mechanisms for stress-induced protein aggregation and its relationship with cell viability are suggested.  相似文献   

13.
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of cytidine deaminases has emerged as an intensively studied field as a result of their important biological functions. These enzymes are involved in lipid metabolism, antibody diversification, and the inhibition of retrotransposons, retroviruses, and some DNA viruses. The APOBEC proteins function in these roles by deaminating single-stranded (ss) DNA or RNA. There are two high-resolution crystal structures available for the APOBEC family, Apo2 and the C-terminal catalytic domain (CD2) of Apo3G or Apo3G-CD2 [Holden et al. (Nature 456:121–124, 2008); Prochnow et al. (Nature 445:447–451, 2007)]. Additionally, the structure of Apo3G-CD2 has also been determined using NMR [Chen et al. (Nature 452:116–119, 2008); Furukawa et al. (EMBO J 28:440–451, 2009); Harjes et al. (J Mol Biol, 2009)]. A detailed structural analysis of the APOBEC proteins and a comparison to other zinc-coordinating deaminases can facilitate our understanding of how APOBEC proteins bind nucleic acids, recognize substrates, and form oligomers. Here, we review the recent development of structural and functional studies that apply to Apo3G as well as the APOBEC deaminase family.  相似文献   

14.
Regulation of phagocyte migration and recruitment by Src-family kinases   总被引:2,自引:0,他引:2  
Src-family kinases (SFKs) regulate different granulocyte and monocyte/macrophage responses. Accumulating evidence suggests that members of this family are implicated in signal transduction pathways regulating phagocytic cell migration and recruitment into inflammatory sites. Macrophages with a genetic deficiency of SFKs display marked alterations in cytoskeleton dynamics, polarization and migration. This same phenotype is found in cells with either a lack of SFK substrates and/or interacting proteins such as Pyk2/FAK, c-Cbl and p190RhoGAP. Notably, SFKs and their downstream targets also regulate monocyte recruitment into inflammatory sites. Depending on the type of assay used, neutrophil migration in vitro may be either dependent on or independent of SFKs. Also neutrophil recruitment in in vivo models of inflammation may be regulated differently by SFKs depending on the tissue involved. In this review we will discuss possible mechanisms by which SFKs may regulate phagocytic cell migratory abilities.  相似文献   

15.
Summary The role of mast cells in active and passive anaphylactic shock was examined using the WBB6F1 mouse, a genetically mast cell-deficient strain. Lethal anaphylactic shock occurred at high incidence rates in mice actively sensitized to bovine serum albumin (BSA). The reaction was specific to BSA since the shock could not be elicited by human or guinea pig serum albumin in these animals. Lethal shock could be prevented by CV-3988 but not by cyproheptadine, which suggests that the shock is mediated by PAF but not by histamine and serotonin. Similarly, lethal shock was provoked by homologous antigens in mice which had been passively sensitized with allogeneic anti-benzylpenicilloyl (BPO) IgG1 monoclonal antibody or with allogeneic or xenogeneic anti-BSA antiserum, but not in those sensitized with allogeneic anti-BPO IgE monoclonal antibody. These findings suggest that mast cells are not necessarily required for anaphylactic shock in the mouse.  相似文献   

16.
17.
A homologue of the chaperonin protein of the HSP60 family has not been shown so far inDrosophila. Using an antibody specific to HSP60 family protein in Western blotting and immunocytochemistry, we showed that a 64-kDa polypeptide, homologous to the HSP60, is constitutively present in all tissues ofDrosophila melanogaster throughout the life cycle from the freshly laid egg to all embryonic, larval and adult stages. A 64-kDa polypeptide reacting with the same antibody in Western blots is present in all species ofDrosophila examined. Using Western blotting in conjunction with35S-methionine labeling of newly synthesized proteins and immuno-precipitation of the labeled proteins with HSP60-specific antibody, it was shown that synthesis of the 64-kDa homologue of HSP60 is appreciably increased by heat shock only in the Malpighian tubules, which are already known to lack the common HSPs.  相似文献   

18.
19.
A better definition of the structural and thermodynamic determinants of the interaction of nucleic acids with proteins is shedding light on the origin of the genetic code, protein synthesis, and nucleic acid replication. This is also allowing to show a consistent biochemical framework for the appearance of these fundamental synthetic mechanisms. This article reviews recent significant developments in the field, and discusses an integrated model for a biochemically plausible evolution of these fundamental mechanisms of synthesis. This model is based on sequence-specific interactions between abiotically synthesized polynucleotides and polypeptides, and can account for a coordinate evolution of the genetic code, protein synthesis, and nucleic acid replication in living cells.  相似文献   

20.
Proteins are composed of domains, which are conserved evolutionary units that often also correspond to functional units and can frequently be detected with reasonable reliability using computational methods. Most proteins consist of two or more domains, giving rise to a variety of combinations of domains. Another level of complexity arises because proteins themselves can form complexes with small molecules, nucleic acids and other proteins. The networks of both domain combinations and protein interactions can be conceptualised as graphs, and these graphs can be analysed conveniently by computational methods. In this review we summarise facts and hypotheses about the evolution of domains in multi-domain proteins and protein complexes, and the tools and data resources available to study them.Received 20 September 2004; received after revision 23 October 2004; accepted 1 November 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号