首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
LDL receptor relatives at the crossroad of endocytosis and signaling   总被引:10,自引:0,他引:10  
For many years, the low-density lipoprotein (LDL) receptor and the LDL receptor-related protein (LRP) have been considered to be prototypes of cargo receptors which deliver, via endocytosis, macromolecules into cells. However, the recent identification of additional members of this gene family and examination of their biology has revealed that at least some of these proteins are also signaling receptors. Very low density lipoprotein receptor and ApoER2 transmit the extracellular reelin signal into migrating neurons, and thus are key components of the reelin pathway which governs neuronal layering of the forebrain during embryonic brain development. LRP5 and LRP6 are integral components of the Wnt signaling pathway which is central to many processes of metazoan development, cell proliferation, and tumor formation. Adaptor proteins interacting with the cytosolic domains of these receptors might orchestrate their ability to deliver their cargo or a signal.  相似文献   

2.
Novel regulation and function of Src tyrosine kinase   总被引:4,自引:0,他引:4  
Src tyrosine kinase is a critical signal transducer that modulates a wide variety of cellular functions. Misregulation of Src leads to cell transformation and cancer. Heterotrimeric guanine-nucleotide-binding proteins (G proteins) are another group of signaling molecules that transduce signals from cell-surface receptors to generate physiological responses. Recently, it was discovered that Gαs and Gαi could directly stimulate Src family tyrosine kinase activity. This novel regulation of Src tyrosine kinase by G proteins provides insights into the adenylyl cyclase-independent signaling mechanisms involved in ligand-induced receptor desensitization, internalization and other physiological processes. Received 17 August 2001; received after revision 22 October 2001; accepted 24 October 2001  相似文献   

3.
Osmotic stress signaling via protein kinases   总被引:1,自引:0,他引:1  
Plants face various kinds of environmental stresses, including drought, salinity, and low temperature, which cause osmotic stress. An understanding of the plant signaling pathways that respond to osmotic stress is important for both basic biology and agriculture. In this review, we summarize recent investigations concerning the SNF1-related protein kinase (SnRK) 2 kinase family, which play central roles in osmotic stress responses. SnRK2s are activated by osmotic stress, and a mutant lacking SnRK2s is hypersensitive to osmotic stress. Many questions remain about the signaling pathway upstream and downstream of SnRK2s. Because some SnRK2s also functions in the abscisic acid (ABA) signaling pathway, which has recently been well clarified, study of SnRK2s in ABA signaling can provide clues regarding their roles in osmotic stress signaling.  相似文献   

4.
The type 1 angiotensin receptor (AT(1)) activates an array of intracellular signalling pathways that control cell and tissue responses to the peptide hormone angiotensin II (AngII). The capacity of AT(1) receptors to initiate and maintain such signals has typically been explained on the basis of conventional heterotrimeric guanine nucleotide binding protein (G protein) activation, specifically G(q/11). Accumulating evidence from studies utilising a variety of AT(1) receptor mutants and AngII analogues indicates that some important downstream effects of AT(1) receptors are independent of classical G protein coupling. Importantly, AT(1) receptor-mediated endocytosis, tyrosine phosphorylation signalling and mitogen-activated protein kinase activation as well as transactivation of the epidermal growth factor receptor can occur in G(q/11)-uncoupled receptor mutants. These observations point to a functional partitioning of AT(1) receptor signals that permits separation of short-term AngII actions (e.g., vasoconstriction) from more extended events, such as pathological cell growth in heart and blood vessels, and may open up new avenues for selective antagonism.  相似文献   

5.
G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the “triple membrane bypass” pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.  相似文献   

6.
The intracellular signaling pathways mediating the nuclear exclusion of the androgen receptor (AR) by melatonin were evaluated in PC3 cells stably transfected with the AR. The melatonin-induced nuclear exclusion of the AR by melatonin (100 nM, 3 h) was blocked by LY 83583 (an inhibitor of guanylyl cyclases). 8-Bromo-cGMP (a cell-permeable cGMP analog), mimicked the effect of melatonin, as did ionomycin (a calcium ionophore) and PMA [an activator of protein kinase C (PKC)], and their effects were blocked by GF-109203X (a selective PKC inhibitor). BAPTA (an intracellular calcium chelator) blocked the effects of melatonin and 8-bromo-cGMP but not of PMA. Inhibition or activation of the protein kinase A pathway did not affect basal or melatonin-mediated AR localization. We conclude that the melatonin-mediated rise in cGMP elicits AR nuclear exclusion via a pathway involving increased intracellular calcium and PKC activation. These results define a novel signaling pathway that regulates AR localization and androgen responses in target cells. Received 31 July 2001; received after revision 18 September 2001; accepted 30 October 2001  相似文献   

7.
This review discusses multiple ways in which the endoplasmic reticulum participates in and is influenced by signal transduction pathways. The endoplasmic reticulum provides a Ca2+ store that can be mobilized either by calcium-induced calcium release or by the diffusible messenger inositol 1,4,5-trisphosphate. Depletion of endoplasmic reticulum Ca2+ stores provides a signal that activates surface membrane Ca2+ channels, a process known as capacitative calcium entry. Depletion of endoplasmic reticulum stores can also signal long-term cellular responses such as gene expression and programmed cell death or apoptosis. In addition to serving as a source of cellular signals, the endoplasmic reticulum is also functionally and structurally modified by the Ca2+ and protein kinase C pathways. Elevated cytoplasmic Ca2+ causes a rearrangement and fragmentation of endoplasmic reticulum membranes. Protein kinase C activation reduces the storage capacity of the endoplasmic reticulum Ca2+ pool. In some cell types, protein kinase C inhibits capacitative calcium entry. Protein kinase C activation also protects the endoplasmic reticulum from the structural effects of high cytoplasmic Ca2+. The emerging view is one of a complex network of pathways through which the endoplasmic reticulum and the Ca2+ and protein kinase C signaling pathways interact at various levels regulating cellular structure and function.  相似文献   

8.
The stress-activated protein kinase pathways   总被引:29,自引:0,他引:29  
  相似文献   

9.
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.  相似文献   

10.
The termination of heptahelical receptor signaling is a multilevel process coordinated, in large part, by members of the arrestin family of proteins. Arrestin binding to agonist-occupied receptors promotes desensitization by interrupting receptor-G protein coupling, while simultaneously recruiting machinery for receptor endocytosis, vesicular trafficking, and receptor fate determination. By simultaneously binding other proteins, arrestins also act as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein ‘signalsome’ complexes. Arrestin-binding thus ‘switches’ receptors from a transient G protein-coupled state to a persistent arrestin-coupled state that continues to signal as the receptor transits intracellular compartments. While it is clear that signalsome assembly has profound effects on the duration and spatial characteristics of heptahelical receptor signals, the physiologic functions of this novel signaling mechanism are poorly understood. Growing evidence suggests that signalsomes regulate such diverse processes as endocytosis and exocytosis, cell migration, survival, and contractility.  相似文献   

11.
12.
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to β-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to β-catenin stabilization.  相似文献   

13.
Cytonuclear signaling is essential for long-term alterations of cellular properties. Several pathways involving regulated nuclear accumulation of Ser/Thr kinases have been described but little is known about cytonuclear trafficking of tyrosine kinases. Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic non-receptor tyrosine kinase enriched in neurons and involved in functions ranging from synaptic plasticity to bone resorption, as well as in cancer. We previously showed the Ca2+-induced, calcineurin-dependent, nuclear localization of Pyk2. Here, we characterize the molecular mechanisms of Pyk2 cytonuclear localization in transfected PC12 cells. The 700–841 linker region of Pyk2 recapitulates its depolarization-induced nuclear accumulation. This region includes a nuclear export motif regulated by phosphorylation at residue S778, a substrate of cAMP-dependent protein kinase and calcineurin. Nuclear import is controlled by a previously identified sequence in the N-terminal domain and by a novel nuclear targeting signal in the linker region. Regulation of cytonuclear trafficking is independent of Pyk2 activity. The region regulating nuclear localization is absent from the non-neuronal shorter splice isoform of Pyk2. Our results elucidate the mechanisms of Ca2+-induced nuclear accumulation of Pyk2. They also suggest that Pyk2 nuclear accumulation is a novel type of signaling response that may contribute to specific long-term adaptations in neurons.  相似文献   

14.
Parathyroid hormone-related peptide (PTHrP) receptors, coupled to trimeric G proteins, operate in most target cells through at least three different transduction routes: Gαs-mediated stimulation of adenylylcyclase (AC), Gαq-mediated activation of phospholipase Cβ (PLC) and mitogen-activated protein kinase (MAPK) activation. In this study we investigated the relative role of different pathways in human skin fibroblast prolifera-tion. Using chemical inhibitors and activators of signal transduction, we demonstrated that: (i) AC/cAMP and PLC/1,4,5 inositol triphosphate/diacylglycerol second-messenger systems are simultaneously activated following PTHrP binding to its receptors; (ii) the mitogenic response to PTHrP derives from a balance between two counteracting pathways – an activating route mediated by protein kinase C (PKC) and an inhibitory route mediated by protein kinase A (PKA); (iii) PTHrP mitogenic effects are largely dependent on MAPKs, whose activity can be modulate d by both PKA and PKC. Our results indicate that MAPKs are common targets of both transduction routes and, at the same time, their point of divergence in mediating PTHrP dual and opposite mitogenic effects. Received 2 August 2002; received after revision 10 September 2002; accepted 18 October 2002 RID="*" ID="*"Corresponding author.  相似文献   

15.
16.
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with cognitive and behavioral dysfunction and is the leading cause of dementia in the elderly. Several studies have implicated molecular and cellular signaling cascades involving the serine-threonine kinase, glycogen synthase kinase β(GSK-3β) in the pathogenesis of AD. GSK-3β may play an important role in the formation of neurofibrillary tangles and senile plaques, the two classical pathological hallmarks of AD. In this review, we discuss the interaction between GSK-3β and several key molecules involved in AD, including the presenilins, amyloid precursor protein, tau, and β-amyloid. We identify the signal transduction pathways involved in the pathogenesis of AD, including Wnt, Notch, and the PI3 kinase/Akt pathway. These may be potential therapeutic targets in AD. Received 19 December 2005; received after revision 24 January 2006; accepted 6 February 2006  相似文献   

17.
Toll-like receptors (TLRs) act as sensors of microbial components and elicit innate immune responses. All TLR signaling pathways activate the nuclear factor-kappaB (NF-κB), which controls the expression of inflammatory cytokine genes. Transforming growth factor-β-activated kinase 1 (TAK1) is a serine/threonine protein kinase that is critically involved in the activation of NF-κB by tumor necrosis factor (TNFα), interleukin-1β (IL-1β) and TLR ligands. In this study, we identified a novel protein, WD40 domain repeat protein 34 (WDR34) as a TAK1-interacting protein in yeast two-hybrid screens. WDR34 interacted with TAK1, TAK1-binding protein 2 (TAB2), TAK1-binding protein 3 (TAB3) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in overexpression and under physiological conditions. Overexpression of WDR34 inhibited IL-1β-, polyI:C- and lipopolysaccharide (LPS)-induced but not TNFα-induced NF-κB activation, whereas knockdown of WDR34 by a RNA-interference construct potentiated NF-κB activation by these ligands. Our findings suggest that WDR34 is a TAK1-associated inhibitor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. D. Gao and R. Wang contributed equally to this work.  相似文献   

18.
Role of Sam68 as an adaptor protein in signal transduction   总被引:3,自引:0,他引:3  
Sam68, the substrate of Src in mitosis, belongs to the family of RNA binding proteins. Sam68 contains consensus sequences to interact with other proteins via specific domains. Thus, Sam68 has various proline-rich sequences to interact with SH3 domain-containing proteins. Moreover, Sam68 also has a C-terminal domain rich in tyrosine residues that is a substrate for tyrosine kinases. Tyrosine phosphorylation of Sam68 promotes its interaction with SH2 containing proteins. The association of Sam68 with SH3 domain-containing proteins, and its tyrosine phosphorylation may negatively regulate its RNA binding activity. The presence of these consensus sequences to interact with different domains allows this protein to participate in signal transduction pathways triggered by tyrosine kinases. Thus, Sam68 participates in the signaling of T cell receptors, leptin and insulin receptors. In these systems Sam68 is tyrosine phosphorylated and recruited to specific signaling complexes. The participation of Sam68 in signaling suggests that it may function as an adaptor molecule, working as a dock to recruit other signaling molecules. Finally, the connection between this role of Sam68 in protein-protein interaction with RNA binding activity may connect signal transduction of tyrosine kinases with the regulation of RNA metabolism.Received 16 July 2004; received after revision 12 August 2004; accepted 18 August 2004  相似文献   

19.
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics. Received 19 October 2008; received after revision 7 November 2008; accepted 11 November 2008 C. L. Salanga, M. O’Hayre: These authors contributed equally.  相似文献   

20.
JAKs and STATs in invertebrate model organisms   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号