首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these “ciliary” proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes’ influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of “cilia” proteins as a means to demonstrate the potential non-ciliary roles for these proteins.  相似文献   

2.
3.
Transformation: a tool for studying fungal pathogens of plants   总被引:18,自引:0,他引:18  
Plant diseases caused by plant pathogenic fungi continuously threaten the sustainability of global crop production. An effective way to study the disease-causing mechanisms of these organisms is to disrupt their genes, in both a targeted and random manner, so as to isolate mutants exhibiting altered virulence. Although a number of techniques have been employed for such an analysis, those based on transformation are by far the most commonly used. In filamentous fungi, the introduction of DNA by transformation typically results in either the heterologous (illegitimate) integration or the homologous integration of the transforming DNA into the target genome. Homologous integration permits a targeted gene disruption by replacing the wild-type allele on the genome with a mutant allele on transforming DNA. This process has been widely used to determine the role of newly isolated fungal genes in pathogenicity. The heterologous integration of transforming DNA causes a random process of gene disruption (insertional mutagenesis) and has led to the isolation of many fungal mutants defective in pathogenicity. A big advantage of insertional mutagenesis over the more traditional chemical or radiation mutagenesis procedures is that the mutated gene is tagged by transforming DNA and can subsequently be cloned using the transforming DNA. The application of various transformation-based techniques for fungal gene manipulation and how they have increased our understanding and appreciation of some of the most serious plant pathogenic fungi are discussed. Received 9 May 2001; received after revision 2 July 2001; accepted 3 July 2001  相似文献   

4.
5.
Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.  相似文献   

6.
One problem associated with the development of subunit vaccines is their limited immunogenicity, due to their physico-chemical structure, their inability to encounter the correct MHC restriction element, or the need for strong adjuvants to be delivered along with them. These problems are usually solved by conjugating target epitopes (peptides or oligosaccharides) with carrier proteins which provide a source of T-cell epitopes recognised by a large proportion of the vaccinated individuals. We have shown that mycobacterial hsp65 and hsp70 exert a strong helper effect in vivo when conjugated to synthetic peptides or oligosaccharides. Interestingly, this helper effect did not require the need for any adjuvant, either in mice or in monkeys. The helper effect mediated by the hsp65 required that animals were previously primed with either live BCG or the hsp65 alone; on the other hand, such a priming was not required when the hsp70 was used in the conjugates. Similar results were obtained with HSP molecules fromEscherichia coli. This may suggest that the adjuvant-free helper effect observed applies not only to mycobacterial HSP, but also to HSP from other prokaryotes. These findings suggest that microbial hsp70 could be considered for the design of conjugated vaccine constructs for eventual human use.  相似文献   

7.
The widespread distribution of insects over many ecological niches is a testimony to their evolutionary success. The colonization of environments at high latitudes or altitudes required the evolution of biochemical strategies that reduced the impact of cold or freezing stress. This review focuses on our current interests in some of the genes and proteins involved in low temperature survival in insects. Although the most widespread form of protection is the synthesis of low molecular weight polyol cryoprotectants, proteins with intrinsic protective properties, such as the thermal hysteresis or antifreeze proteins are also important. These have been cloned and characterized in certain moths and beetles. Molecular techniques allowing the isolation of genes differentially regulated by low temperatures have revealed that heat shock proteins, cold stress proteins, membrane protectants, as well as ice nucleators and other less well characterized proteins likely also play a role in cold hardiness. Received 10 June 2008; received after revision 17 November 2008; accepted 18 November 2008  相似文献   

8.
Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.  相似文献   

9.
Toxins have been shown to have many biological functions and to constitute a rich source of drugs and biotechnological tools. We focus on toxins that not only have a specific activity, but also contain residues responsible for transmembrane penetration, which can be considered bioportides—a class of cell-penetrating peptides that are also intrinsically bioactive. Bioportides are potential tools in pharmacology and biotechnology as they help deliver substances and nanoparticles to intracellular targets. Bioportides characterized so far are peptides derived from human proteins, such as cytochrome c (CYCS), calcitonin receptor (camptide), and endothelial nitric oxide synthase (nosangiotide). However, toxins are usually disregarded as potential bioportides. In this review, we discuss the inclusion of some toxins and molecules derived thereof as a new class of bioportides based on structure activity relationship, minimization, and biological activity studies. The comparative analysis of the amino acid residue composition of toxin-derived bioportides and their short molecular variants is an innovative analytical strategy which allows us to understand natural toxin multifunctionality in vivo and plan novel pharmacological and biotechnological products. Furthermore, we discuss how many bioportide toxins have a rigid structure with amphiphilic properties important for both cell penetration and bioactivity.  相似文献   

10.
Summary The germination of spores and pollen grains is often inhibited by the serum of subjects who have once suffered from a jaundice. Experiments have been done with spores ofHelminthosporium sativum andAlternaria tenuis and with pollen grains of short style and long style plants ofPrimula obconica. 36 samples of a series of 50 persons, who have suffered from a jaundice, showed the inhibition of germination. 5 samples with positive reaction have been found in a second series of 344 sera of subjects who have never suffered from a jaundice. We observed positive reaction withHepatitis epidemica acuta (6 samples); all other kind of diseases so far tested did not show any similar reaction.  相似文献   

11.
Insect chitinase and chitinase-like proteins   总被引:6,自引:0,他引:6  
Insect chitinases belong to family 18 glycosylhydrolases that hydrolyze chitin by an endo-type of cleavage while retaining the anomeric β-(1→4) configuration of products. There are multiple genes encoding chitinases and chitinase-like proteins in all insect species studied using bioinformatics searches. These chitinases differ in size, domain organization, physical, chemical and enzymatic properties, and in patterns of their expression during development. There are also differences in tissue specificity of expression. Based on a phylogenetic analysis, insect chitinases and chitinase-like proteins have been classified into several different groups. Results of RNA interference experiments demonstrate that at least some of these chitinases belonging to different groups serve non-redundant functions and are essential for insect survival, molting or development. Chitinases have been utilized for biological control of insect pests on transgenic plants either alone or in combination with other insecticidal proteins. Specific chitinases may prove to be useful as biocontrol agents and/or as vaccines.  相似文献   

12.
DING proteins, named after their conserved N-terminus, form an overlooked protein family whose members were generally discovered through serendipity. It is characterized by an unusually high sequence conservation, even between distantly related species, and by an outstanding diversity of activities and ligands. They all share a demonstrated capacity to bind phosphate with high affinity or at least a predicted phosphate-binding site. However, DING protein genes are conspicuously absent from databases. The many novel family members identified in recent years have confirmed that DING proteins are ubiquitous not only in animals and plants but probably also in prokaryotes. At the functional level, there is increasing evidence that they participate in many health-related processes such as cancers as well as bacterial (Pseudomonas) and viral (HIV) infections, by mechanisms that are now beginning to be understood. They thus represent potent targets for the development of novel therapeutic approaches, especially against HIV. The few genomic sequences that are now available are starting to give some clues on why DING protein genes and mRNAs are well conserved and difficult to clone. This could open a new era of research, of both fundamental and applied importance.  相似文献   

13.
Given the huge number of technical handbooks on multifarious subjects, ranging from astronomy and music to rhetoric, horticulture, and cooking, the absence of ancient nautical handbooks comes as a surprise. Such handbooks did exist in antiquity in some form, likely having been written in the period of the Hellenistic boom of technical texts, but disappearing at some later point, perhaps around the third or fourth century AD. This disappearance could be due to a number of reasons, suggesting that the tastes and needs of the audience(s) for nautical technai were changing. These nautical handbooks may have been superseded by more specialized works, such as treatises on astronomy and mathematics, geography and periploi, and naval tactics, which may have been regarded as being of greater use than an interdisciplinary book on sailing. From a purely aesthetic perspective, many readers will probably not feel inclined to bemoan the loss of all ancient handbooks on navigation, as they will have looked similar to the periploi, containing many imperatives, short main clauses in hypotaxis, and many numerals.  相似文献   

14.
Composition and conservation of the telomeric complex   总被引:6,自引:0,他引:6  
The telomere is composed of telomeric DNA and telomere-associated proteins. Recently, many telomere-associated proteins have been identified, and various telomere functions have been uncovered. In budding yeast, scRap1 binds directly to telomeric DNA, and other telomere regulators (Sir proteins and Rif proteins) are recruited to the telomeres by interacting with scRap1. Cdc13 binds to the most distal end of the chromosome and recruits telomerase to the telomeres. In fission yeast and humans, TTAGGG repeat binding factor (TRF) family proteins bind directly to telomeric DNA, and Rap1 proteins and other telomere regulators are recruited to the telomeres by interacting with the TRF family proteins. Both organisms have Pot1 proteins at the most distal end of the telomere instead of a budding-yeast Cdc13-like protein. Therefore, fission yeast and humans have in part common telomeric compositions that differ from that of budding yeast, a result that suggests budding yeast has lost some telomere components during the course of evolution.  相似文献   

15.
Cytokines play an important regulatory role in the metabolism of proteoglycans. Proteoglycans are found in plasma membranes, but predominantly in the extra-cellular matrix. In the latter they are quantitatively and qualitatively essential components. Especially in a tissue like cartilage without any blood vessels, the cells are dependent on cytokines for the communication among themselves in the extra-cellular matrix and also for communication with the outside world. Various cytokines have been found to be able to penetrate the extra-cellular matrix and inhibit, respectively stimulate the proteoglycan synthesis. Also, the degradation of proteoglycans can be stimulated, respectively inhibited by several cytokines. In addition, some cytokines have been found which regulate the effects of the other cytokines. With respect to proteoglycan metabolism a complex cytokine network is emerging.Furthermore it is becoming increasingly clear that proteoglycans are connected to the cytokine network by their own bioactive functions. First, they possibly possess cytokine activities themselves. Second, they can function as receptors, protectors, inactivators and storage ligands for cytokines. So the proteoglycans are clearly involved in the feedback signalling from the extra-cellular matrix to the cells that are synthesizing this extra-cellular matrix. Together with agonistic or antagonistic cytokines they are involved in the regulation of proteoglycan turnover during balanced or unbalanced metabolism in normal, respectively pathological situations.  相似文献   

16.
A dynamic view of peptides and proteins in membranes   总被引:1,自引:0,他引:1  
Biological membranes are highly dynamic supramolecular arrangements of lipids and proteins, which fulfill key cellular functions. Relatively few high-resolution membrane protein structures are known to date, although during recent years the structural databases have expanded at an accelerated pace. In some instances the structures of reaction intermediates provide a stroboscopic view on the conformational changes involved in protein function. Other biophysical approaches add dynamic aspects and allow one to investigate the interactions with the lipid bilayers. Membrane-active peptides fulfill many important functions in nature as they act as antimicrobials, channels, transporters or hormones, and their studies have much increased our understanding of polypeptide-membrane interactions. Interestingly several proteins have been identified that interact with the membrane as loose arrays of domains. Such conformations easily escape classical high-resolution structural analysis and the lessons learned from peptides may therefore be instructive for our understanding of the functioning of such membrane proteins. Received 11 March 2008; received after revision 2 May 2008; accepted 5 May 2008  相似文献   

17.
Hemes (a, b, c, and o) and heme d 1 belong to the group of modified tetrapyrroles, which also includes chlorophylls, cobalamins, coenzyme F430, and siroheme. These compounds are found throughout all domains of life and are involved in a variety of essential biological processes ranging from photosynthesis to methanogenesis. The biosynthesis of heme b has been well studied in many organisms, but in sulfate-reducing bacteria and archaea, the pathway has remained a mystery, as many of the enzymes involved in these characterized steps are absent. The heme pathway in most organisms proceeds from the cyclic precursor of all modified tetrapyrroles uroporphyrinogen III, to coproporphyrinogen III, which is followed by oxidation of the ring and finally iron insertion. Sulfate-reducing bacteria and some archaea lack the genetic information necessary to convert uroporphyrinogen III to heme along the “classical” route and instead use an “alternative” pathway. Biosynthesis of the isobacteriochlorin heme d 1, a cofactor of the dissimilatory nitrite reductase cytochrome cd 1, has also been a subject of much research, although the biosynthetic pathway and its intermediates have evaded discovery for quite some time. This review focuses on the recent advances in the understanding of these two pathways and their surprisingly close relationship via the unlikely intermediate siroheme, which is also a cofactor of sulfite and nitrite reductases in many organisms. The evolutionary questions raised by this discovery will also be discussed along with the potential regulation required by organisms with overlapping tetrapyrrole biosynthesis pathways.  相似文献   

18.
Lysine acetylation/deacetylation is increasingly being recognized as common post-translational modification that appears to be broadly operational throughout the cell. The functional roles of these modifications, outside of the nucleus, have not been extensively studied. Moreover, as acetyl-CoA donates the acetyl group for acetylation, nutrient availability and energetic status may be pivotal in this modification. Similarly, nutrient limitation is associated with the deacetylation reaction. This modification is orchestrated by a novel family of sirtuin deacetylases that function in a nutrient and redox dependent manner and targets non-histone protein deacetylation. In compartment-specific locations, candidate target proteins undergoing lysine-residue deacetylation are being identified. Through these investigations, the functional role of this post-translational modification is being delineated. We review the sirtuin family proteins, discuss their functional effects on target proteins, and postulate on potential biological programs and disease processes that may be modified by sirtuin-mediated deacetylation of target proteins.  相似文献   

19.
20.
It is amazing to see how many webpages are devoted to the art of finding the date of Easter Sunday. Just for illustration, the reader may search for terms such as Gregorian calendar, date of Easter, or Easter algorithm. Sophisticated essays as well as less enlightening contributions are presented, and many a doubt is expressed about the reliability of some results obtained with some Easter algorithms. In short, there is still a great interest in those problems. Gregorian Easter algorithms exist for two centuries (or more?), but most of their history is rather obscure. Some reasons may be that some important sources are written in Latin or in the German of Goethe’s time, or they are difficult to discover. Without being complete, the following paper is intended to shed light on how those techniques emerged and evolved.1 Like a microcosm, the history of Easter algorithms resembles the history of any science: it is a story of trials, errors, and successes, and, last but not least, a story of offended pride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号