首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
M H Malim  J Hauber  R Fenrick  B R Cullen 《Nature》1988,335(6186):181-183
The pathogenic human retrovirus human immunodeficiency virus type 1 (HIV-1) encodes two trans-acting nuclear proteins, tat and rev, whose functional expression is essential for viral replication in vitro. The tat protein greatly enhances the expression of both structural and regulatory genes of HIV-1 (linked to the viral long-terminal-repeat promoter element), whereas the rev gene product (previously termed art or trs) has only been shown to be required for the synthesis of structural proteins. Here, we demonstrate that rev also moderates the expression of regulatory genes of HIV-1. It decreases the expression of messenger RNAs that encode the full-length form of the viral tat gene product or the rev protein itself, and induces the synthesis of a previously unreported, truncated tat protein. These actions of rev are mediated by a dramatic shift in the ratio of spliced to unspliced cytoplasmic HIV-1 mRNA. Therefore rev not only activates the synthesis of the viral structural proteins, but also modulates the level and quality of HIV-1 regulatory gene expression.  相似文献   

2.
3.
4.
Although much is now known of the strain variation among the type-1 human immunodeficiency virus (HIV-1), which is the cause of AIDS (acquired immune deficiency syndrome) in the United States, Europe, and Central Africa, much less is yet known about a second group of viruses that have been found in West Africans. One member of this group, named human T-cell lymphotropic virus type 4 (HTLV-4), has been isolated from healthy Senegalese. Another is the virus isolated from West Africans with AIDS-like illness and originally called LAV-2 but now renamed HIV-2. Both these viruses seem to be less closely related to HIV-1 than they are to a virus of healthy African green monkeys, known variously as simian T-cell lymphotropic virus type 3 (STLV-3) or simian immunodeficiency virus (SIV), which in turn is related to viruses isolated from healthy sooty mangabeys and captive macaques with a form of immunodeficiency (to distinguish these viruses they are referred to as STLV-3 (or SIV)agm, STLV-3mac, or STLV-3smm). To clarify the relationship between the various HIVs, STLV-3s and HTLV-4 we are determining and comparing the molecular and biological characteristics of several of them. Following our recent publication of a restriction-site map of STLV-3agm, we now report that the equivalent map of three isolates of HTLV-4 is remarkably similar to it. In addition we present comparative sequence data on the long terminal repeats (LTR) of HTLV-4, STLV-3agm, HIV-1 and HIV-2, together with evidence that cloned HTLV-4 uses the same receptor as HIV-1 and induces some, but not all, of the cytopathic effects attributed to most isolates of HIV-1 and HIV-2.  相似文献   

5.
Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein   总被引:52,自引:0,他引:52  
  相似文献   

6.
B H Hahn  L I Kong  S W Lee  P Kumar  M E Taylor  S K Arya  G M Shaw 《Nature》1987,330(6144):184-186
Human immunodeficiency virus type 1 (HIV-1) is the aetiologic agent of AIDS (acquired immune deficiency syndrome) in most countries and probably originated in Central Africa like the AIDS epidemic itself. Evidence for a second major group of human immunodeficiency-associated retroviruses came from a report that West African human populations like wild-caught African green monkeys had serum antibodies that reacted more strongly with a simian immunodeficiency virus (STLV-3Mac) (ref.6) than with HIV-1. Novel T-lymphotropic retroviruses were reported to have been isolated from healthy Senegalese West Africans (HTLV-4) (ref. 4) and from African green monkeys (STLV-3AGM) (ref. 7), and a different retrovirus (HIV-2) was identified in other West African AIDS patients. Genomic analysis of HIV-2 clearly distinguished it from STLV-3 (ref. 9), but restriction enzyme site-mapping of three different HTLV-4 isolates and six different STLV-3AGM isolates showed them to be essentially indistinguishable. In this report we clone, restriction map, and partially sequence three isolates of HTLV-4 (PK82, PK289, PK190) (ref. 4). We find that these viruses differ in nucleotide sequence from each other and from three isolates of STLV-3AGM (K78, K6W, K1) (ref. 7) by 1% or less. We also report the isolation of a T-lymphotropic retrovirus from the peripheral blood of a healthy Senegalese woman which hybridizes preferentially to HIV-2 specific DNA probes. We conclude that HTLV-4 (ref. 4) and STLV-3AGM (ref. 7) are not independent virus isolates and that HIV-2 is present in Senegal as it is in other West African countries.  相似文献   

7.
Extensive variation of human immunodeficiency virus type-1 in vivo   总被引:59,自引:0,他引:59  
M S Saag  B H Hahn  J Gibbons  Y Li  E S Parks  W P Parks  G M Shaw 《Nature》1988,334(6181):440-444
Genotypic variation among independent isolates of human immunodeficiency virus type-1 (HIV-1) is well known, but its molecular basis and biological consequences are poorly understood. We examined the genesis of molecular variation in HIV-1 by sequential virus isolations from two chronically infected individuals and analysis of recombinant HIV-1 genomic clones. In three different virus isolates full-length HIV-1 clones were identified and found to consist, respectively, of 17, 9 and 13 distinguishable, but highly-related, viral genotypes. Thirty-five viral clones derived from two HIV-1 isolates obtained from the same individual but 16 months apart showed progressive change, yet were clearly related. Similar changes in the HIV-1 genome did not occur in vitro during virus isolation and amplification. The results indicate that HIV-1 variation in vivo is rapid, that a remarkably large number of related but distinguishable genotypic variants evolve in parallel and coexist during chronic infection, and that 'isolates' of HIV-1, unless molecularly or biologically cloned, generally consist of complex mixtures of genotypically distinguishable viruses.  相似文献   

8.
9.
Variable and conserved neutralization antigens of human immunodeficiency virus   总被引:65,自引:0,他引:65  
Human immunodeficiency virus type 1 (HIV-1, HTLV-III/LAV), the retrovirus responsible for acquired immune deficiency syndrome (AIDS), shows a high degree of genetic polymorphism, particularly in the env gene. We have examined sera from rabbits and guinea pigs immunized with gp130, a recombinant env glycoprotein, and sera from HIV-1-infected subjects, to test their capacity to neutralize a panel of genetically divergent HIV-1 isolates. The sera raised against recombinant antigen specifically neutralized the virus strain from which the env gene was cloned (HTLV-IIIB), but not an independent isolate (HTLV-IIIRF). One rabbit serum tested on seven isolates cross-neutralized two at lower titres. In contrast, human sera from Britain and Uganda, chosen for ability to neutralize HTLV-IIIRF, cross-neutralized six other HIV-1 isolates. When serum and isolate were derived from the same subject, the serum was in some cases effective at slightly lower concentrations (higher titres). Human complement did not affect neutralization titres. These findings indicate that genetically diverse HIV-1 isolates carry both variable and widely conserved antigenic epitopes for neutralizing antibodies. The identification of shared epitopes may help the development of protective vaccines.  相似文献   

10.
Molecular cloning and polymorphism of the human immune deficiency virus type 2   总被引:40,自引:0,他引:40  
F Clavel  M Guyader  D Guétard  M Sallé  L Montagnier  M Alizon 《Nature》1986,324(6098):691-695
We recently reported the isolation of a novel retrovirus, the human immune deficiency virus type 2 (HIV-2, previously named LAV-2), from patients with acquired immune deficiency syndrome (AIDS) originating from West Africa. This virus is related to HIV-1, the causative agent of the AIDS epidemic now spreading in Central and East Africa, as well as the USA and Europe (see ref. 3 for review) both by its morphology and by its tropism and in vitro cytopathic effect on CD4 (T4) positive cell lines and lymphocytes. But preliminary hybridization experiments indicated that there are substantiated differences between the sequences of the two genomes. Furthermore, the proteins of HIV-1 and HIV-2 have different sizes and their serological cross-reactivity is restricted to the major core protein, as the envelope glycoproteins of HIV-2 are not immunoprecipitated by HIV-1-positive sera. We now report the molecular cloning of the complete 9.5-kilobase (kb) genome of HIV-2, the observation of restriction site polymorphism between different isolates, and a preliminary analysis of the relationship of HIV-2 with other human and simian retroviruses.  相似文献   

11.
Because of the growing incidence of AIDS (acquired immune deficiency syndrome), the need for studies on animal models is urgent. Infection of chimpanzees with the retroviral agent of human AIDS, the human immunodeficiency virus (HIV), will have only limited usefulness because chimpanzees are in short supply and do not develop the disease. Among non-human primates, both type D retroviruses and lentiviruses can be responsible for immune deficiencies. The D-type retroviruses, although important pathogens in macaque monkey colonies, are not satisfactory as a model because they differ in genetic structure and pathophysiological properties from the human AIDS viruses. The simian lentivirus, previously referred to as simian T-cell lymphotropic virus type III (STLV-III), now termed simian immunodeficiency virus (SIV) is related to HIV by the antigenicity of its proteins and in its main biological properties, such as cytopathic effect and tropism for CD4-bearing cells. Most importantly, SIV induces a disease with remarkable similarity to human AIDS in the common rhesus macaques, which therefore constitute the best animal model currently available. Natural or experimental infection of other monkeys such as African green monkeys or sooty mangabeys has not yet been associated with disease. Molecular approaches of the SIV system will be needed for biological studies and development of vaccines that could be tested in animals. We have cloned and sequenced the complete genome of SIV isolated from a naturally infected macaque that died of AIDS. This SIVMAC appears genetically close to the agent of AIDS in West Africa, HIV-2, but the divergence of the sequences of SIV and HIV-2 is greater than that previously observed between HIV-1 isolates.  相似文献   

12.
Characterization of ribosomal frameshifting in HIV-1 gag-pol expression   总被引:119,自引:0,他引:119  
T Jacks  M D Power  F R Masiarz  P A Luciw  P J Barr  H E Varmus 《Nature》1988,331(6153):280-283
  相似文献   

13.
14.
15.
Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4(DCAF1) E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi-Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi-Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.  相似文献   

16.
Sayah DM  Sokolskaja E  Berthoux L  Luban J 《Nature》2004,430(6999):569-573
In Old World primates, TRIM5-alpha confers a potent block to human immunodeficiency virus type 1 (HIV-1) infection that acts after virus entry into cells. Cyclophilin A (CypA) binding to viral capsid protects HIV-1 from a similar activity in human cells. Among New World primates, only owl monkeys exhibit post-entry restriction of HIV-1 (ref. 1). Paradoxically, the barrier to HIV-1 in owl monkey cells is released by capsid mutants or drugs that disrupt capsid interaction with CypA. Here we show that knockdown of owl monkey CypA by RNA interference (RNAi) correlates with suppression of anti-HIV-1 activity. However, reintroduction of CypA protein to RNAi-treated cells did not restore antiviral activity. A search for additional RNAi targets unearthed TRIMCyp, an RNAi-responsive messenger RNA encoding a TRIM5-CypA fusion protein. TRIMCyp accounts for post-entry restriction of HIV-1 in owl monkeys and blocks HIV-1 infection when transferred to otherwise infectable human or rat cells. It seems that TRIMCyp arose after the divergence of New and Old World primates when a LINE-1 retrotransposon catalysed the insertion of a CypA complementary DNA into the TRIM5 locus. This is the first vertebrate example of a chimaeric gene generated by this mechanism of exon shuffling.  相似文献   

17.
Human infection by genetically diverse SIVSM-related HIV-2 in west Africa.   总被引:41,自引:0,他引:41  
Our understanding of the biology and origins of human immunodeficiency virus type 2 (HIV-2) derives from studies of cultured isolates from urban populations experiencing epidemic infection and disease. To test the hypothesis that such isolates might represent only a subset of a larger, genetically more diverse group of viruses, we used nested polymerase chain reactions to characterize HIV-2 sequences in uncultured mononuclear blood cells of two healthy Liberian agricultural workers, from whom virus isolation was repeatedly unsuccessful, and from a culture-positive symptomatic urban dweller. Analysis of pol, env and long terminal repeat regions revealed the presence of three highly divergent HIV-2 strains, one of which (from one of the healthy subjects) was significantly more closely related to simian immunodeficiency viruses infecting sooty mangabeys and rhesus macaques (SIVSM/SIVMAC) than to any virus of human derivation. This subject also harboured multiply defective viral genotypes that resulted from hypermutation of G to A bases. Our results indicate that HIV-2, SIVSM and SIVMAC comprise a single, highly diverse group of lentiviruses which cannot be separated into distinct phylogenetic lineages according to species of origin.  相似文献   

18.
Sheehy AM  Gaddis NC  Choi JD  Malim MH 《Nature》2002,418(6898):646-650
Viruses have developed diverse non-immune strategies to counteract host-mediated mechanisms that confer resistance to infection. The Vif (virion infectivity factor) proteins are encoded by primate immunodeficiency viruses, most notably human immunodeficiency virus-1 (HIV-1). These proteins are potent regulators of virus infection and replication and are consequently essential for pathogenic infections in vivo. HIV-1 Vif seems to be required during the late stages of virus production for the suppression of an innate antiviral phenotype that resides in human T lymphocytes. Thus, in the absence of Vif, expression of this phenotype renders progeny virions non-infectious. Here, we describe a unique cellular gene, CEM15, whose transient or stable expression in cells that do not normally express CEM15 recreates this phenotype, but whose antiviral action is overcome by the presence of Vif. Because the Vif:CEM15 regulatory circuit is critical for HIV-1 replication, perturbing the circuit may be a promising target for future HIV/AIDS therapies.  相似文献   

19.
Okeoma CM  Lovsin N  Peterlin BM  Ross SR 《Nature》2007,445(7130):927-930
Genomes of all mammals encode apobec3 genes, which are thought to have a function in intrinsic cellular immunity to several viruses including human immunodeficiency virus type 1 (HIV-1). APOBEC3 (A3) proteins are packaged into virions and inhibit retroviral replication in newly infected cells, at least in part by deaminating cytidines on the negative strand DNA intermediates. However, the role of A3 in innate resistance to mouse retroviruses is not understood. Here we show that A3 functions during retroviral infection in vivo and provides partial protection to mice against infection with mouse mammary tumour virus (MMTV). Both mouse A3 and human A3G proteins interacted with the MMTV nucleocapsid in an RNA-dependent fashion and were packaged into virions. In addition, mouse A3-containing and human A3G-containing virions showed a marked decrease in titre. Last, A3(-/-) mice were more susceptible to MMTV infection, because virus spread was more rapid and extensive than in their wild-type littermates.  相似文献   

20.
The phylogenetic history of immunodeficiency viruses   总被引:19,自引:0,他引:19  
T F Smith  A Srinivasan  G Schochetman  M Marcus  G Myers 《Nature》1988,333(6173):573-575
Knowledge of the phylogenetic history of the human immunodeficiency viruses (HIV-1 and HIV-2) is important for our understanding of the epidemiology of AIDS, the disease caused by these viruses. Reconstruction of the evolutionary tree is hampered, however, by two problems. One is the high variation in nucleotide sequence between the known HIV isolates which can create formidable difficulties in identifying homologous genomic sites that may be used in a molecular phylogenetic reconstruction. Another impediment has been the lack of unequivocal time calibration points: there is only a sparse 'fossil record' for HIV and limited historical epidemiological data. We have largely overcome these difficulties by: (1) a thorough optimal-sequence alignment analysis; (2) the inclusion of sequences of an early (1976) HIV-1 isolate, a recent (1986) HIV-2 isolate and two simian immunodeficiency viruses (SIV) along with five other HIV-1 isolates; and (3) the reconstruction of a minimum-length evolutionary tree based on the envelope-gene variable positions. We conclude that HIV-1 may have evolved from its common ancestor with HIV-2 as recently as 40 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号