首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Robinson IM  Ranjan R  Schwarz TL 《Nature》2002,418(6895):336-340
At nerve terminals, a focal and transient increase in intracellular Ca(2+) triggers the fusion of neurotransmitter-filled vesicles with the plasma membrane. The most extensively studied candidate for the Ca(2+)-sensing trigger is synaptotagmin I, whose Ca(2+)-dependent interactions with acidic phospholipids and syntaxin have largely been ascribed to its C(2)A domain, although the C(2)B domain also binds Ca(2+) (refs 7, 8). Genetic tests of synaptotagmin I have been equivocal as to whether it is the Ca(2+)-sensing trigger of fusion. Synaptotagmin IV, a related isoform that does not bind Ca(2+) in the C(2)A domain, might be an inhibitor of release. We mutated an essential aspartate of the Ca(2+)-binding site of the synaptotagmin I C(2)A domain and expressed it in Drosophila lacking synaptotagmin I. Here we show that, despite the disruption of the binding site, the Ca(2+)-dependent properties of transmission were not altered. Similarly, we found that synaptotagmin IV could substitute for synaptotagmin I. We conclude that the C(2)A domain of synaptotagmin is not required for Ca(2+)-dependent synaptic transmission, and that synaptotagmin IV promotes rather than inhibits transmission.  相似文献   

2.
Synaptotagmin I functions as a calcium regulator of release probability   总被引:28,自引:0,他引:28  
In all synapses, Ca2+ triggers neurotransmitter release to initiate signal transmission. Ca2+ presumably acts by activating synaptic Ca2+ sensors, but the nature of these sensors--which are the gatekeepers to neurotransmission--remains unclear. One of the candidate Ca2+ sensors in release is the synaptic Ca2+-binding protein synaptotagmin I. Here we have studied a point mutation in synaptotagmin I that causes a twofold decrease in overall Ca2+ affinity without inducing structural or conformational changes. When introduced by homologous recombination into the endogenous synaptotagmin I gene in mice, this point mutation decreases the Ca2+ sensitivity of neurotransmitter release twofold, but does not alter spontaneous release or the size of the readily releasable pool of neurotransmitters. Therefore, Ca2+ binding to synaptotagmin I participates in triggering neurotransmitter release at the synapse.  相似文献   

3.
Mackler JM  Drummond JA  Loewen CA  Robinson IM  Reist NE 《Nature》2002,418(6895):340-344
Synaptotagmin is a synaptic vesicle protein that is postulated to be the Ca(2+) sensor for fast, evoked neurotransmitter release. Deleting the gene for synaptotagmin (syt(null)) strongly suppresses synaptic transmission in every species examined, showing that synaptotagmin is central in the synaptic vesicle cycle. The cytoplasmic region of synaptotagmin contains two C(2) domains, C(2)A and C(2)B. Five, highly conserved, acidic residues in both the C(2)A and C(2)B domains of synaptotagmin coordinate the binding of Ca(2+) ions, and biochemical studies have characterized several in vitro Ca(2+)-dependent interactions between synaptotagmin and other nerve terminal molecules. But there has been no direct evidence that any of the Ca(2+)-binding sites within synaptotagmin are required in vivo. Here we show that mutating two of the Ca(2+)-binding aspartate residues in the C(2)B domain (D(416,418)N in Drosophila) decreased evoked transmitter release by >95%, and decreased the apparent Ca(2+) affinity of evoked transmitter release. These studies show that the Ca(2+)-binding motif of the C(2)B domain of synaptotagmin is essential for synaptic transmission.  相似文献   

4.
Wang CT  Lu JC  Bai J  Chang PY  Martin TF  Chapman ER  Jackson MB 《Nature》2003,424(6951):943-947
Exocytosis-the release of the contents of a vesicle--proceeds by two mechanisms. Full fusion occurs when the vesicle and plasma membranes merge. Alternatively, in what is termed kiss-and-run, vesicles can release transmitter during transient contacts with the plasma membrane. Little is known at the molecular level about how the choice between these two pathways is regulated. Here we report amperometric recordings of catecholamine efflux through individual fusion pores. Transfection with synaptotagmin (Syt) IV increased the frequency and duration of kiss-and-run events, but left their amplitude unchanged. Endogenous Syt IV, induced by forskolin treatment, had a similar effect. Full fusion was inhibited by mutation of a Ca2+ ligand in the C2A domain of Syt I; kiss-and-run was inhibited by mutation of a homologous Ca2+ ligand in the C2B domain of Syt IV. The Ca2+ sensitivity for full fusion was 5-fold higher with Syt I than Syt IV, but for kiss-and-run the Ca2+ sensitivities differed by a factor of only two. Syt thus regulates the choice between full fusion and kiss-and-run, with Ca2+ binding to the C2A and C2B domains playing an important role in this choice.  相似文献   

5.
J S Smith  R Coronado  G Meissner 《Nature》1985,316(6027):446-449
Rapid calcium efflux from the sarcoplasmic reticulum (SR) is a necessary step in excitation-contraction coupling in skeletal muscle and is thought to be mediated by a calcium channel. Calcium efflux has been studied in fragmented SR vesicles by radioisotope efflux and fluorescence measurements. Several laboratories have reported that adenine nucleotides can stimulate calcium efflux from SR. In recent reports, Ca2+ release with a first-order rate constant as high as 100 s-1 has been observed for nucleotide-stimulated Ca2+ release from SR vesicles. Also, radioisotope efflux was blocked by Mg2+ and micromolar concentrations of the polycationic dye, ruthenium red. These high rates of transport are difficult to reconcile with a mechanism other than passive diffusion through a nucleotide-activated 'calcium release channel'. Using the fusion technique for inserting SR proteins into planar lipid bilayers, we report here single-channel recordings of calcium release channels from purified 'heavy' SR membranes. Channels have been identified on the basis of their activation by adenine nucleotides, blockade by ruthenium red, and selectivity for divalent cations. Surprisingly, the channel studied here exhibits an unusually large conductance of 170 pS in 50 mM Ba2+ while still being capable of discriminating against monovalent cations by a permeability ratio, P(Ba)/P(Cs) = 11.4.  相似文献   

6.
Jin R  Rummel A  Binz T  Brunger AT 《Nature》2006,444(7122):1092-1095
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.  相似文献   

7.
F A Lai  H P Erickson  E Rousseau  Q Y Liu  G Meissner 《Nature》1988,331(6154):315-319
The calcium release channel from rabbit muscle sarcoplasmic reticulum (SR) has been purified and reconstituted as a functional unit in lipid bilayers. Electron microscopy reveals the four-leaf clover structure previously described for the 'feet' that span the transverse tubule (T)-SR junction. Ca2+ release from the SR induced by T-system depolarization during excitation-contraction coupling in muscle may thus be effected through a direct association of the T-system with SR Ca2+-release channels.  相似文献   

8.
Synapsin I is a synaptic vesicle-associated phosphoprotein that is involved in the modulation of neurotransmitter release. Ca2+/calmodulin-dependent protein kinase II, which phosphorylates two sites in the carboxy-terminal region of synapsin I, causes synapsin I to dissociate from synaptic vesicles and increases neurotransmitter release. Conversely, the dephosphorylated form of synapsin I, but not the form phosphorylated by Ca2+/calmodulin-dependent protein kinase II, inhibits neurotransmitter release. The amino-terminal region of synapsin I interacts with membrane phospholipids, whereas the C-terminal region binds to a protein component of synaptic vesicles. Here we demonstrate that the binding of the C-terminal region of synapsin I involves the regulatory domain of a synaptic vesicle-associated form of Ca2+/calmodulin-dependent protein kinase II. Our results indicate that this form of the kinase functions both as a binding protein for synapsin I, and as an enzyme that phosphorylates synapsin I and promotes its dissociation from the vesicles.  相似文献   

9.
10.
A vertebrate neurotoxin, alpha-latrotoxin, from black widow spider venom causes synaptic vesicle exocytosis and neurotransmitter release from presynaptic nerve terminals. Although the mechanism of action of alpha-latrotoxin is not known, it does require binding of alpha-latrotoxin to a high-affinity receptor on the presynaptic plasma membrane. The alpha-latrotoxin receptor seems to be exclusively at the presynaptic plasmamembrane. Here we report that the alpha-latrotoxin receptor specifically binds to a synaptic vesicle protein, synaptotagmin, and modulates its phosphorylation. Synaptotagmin is a synaptic vesicle-specific membrane protein that binds negatively charged phospholipids and contains two copies of a putative Ca(2+)-binding domain from protein kinase C (the C2-domain), suggesting a regulatory role in synaptic vesicle fusion. Our findings suggest that a physiological role of the alpha-latrotoxin receptor may be the docking of synaptic vesicles at the active zone. The direct interaction of the alpha-latrotoxin receptor with a synaptic vesicle protein also suggests a mechanism of action for this toxin in causing neurotransmitter release.  相似文献   

11.
Willig KI  Rizzoli SO  Westphal V  Jahn R  Hell SW 《Nature》2006,440(7086):935-939
Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles and released by exocytosis upon activation. The vesicle membrane is then retrieved by endocytosis, and synaptic vesicles are regenerated and re-filled with neurotransmitter. Although many aspects of vesicle recycling are understood, the fate of the vesicles after fusion is still unclear. Do their components diffuse on the plasma membrane, or do they remain together? This question has been difficult to answer because synaptic vesicles are too small (approximately 40 nm in diameter) and too densely packed to be resolved by available fluorescence microscopes. Here we use stimulated emission depletion (STED) to reduce the focal spot area by about an order of magnitude below the diffraction limit, thereby resolving individual vesicles in the synapse. We show that synaptotagmin I, a protein resident in the vesicle membrane, remains clustered in isolated patches on the presynaptic membrane regardless of whether the nerve terminals are mildly active or intensely stimulated. This suggests that at least some vesicle constituents remain together during recycling. Our study also demonstrates that questions involving cellular structures with dimensions of a few tens of nanometres can be resolved with conventional far-field optics and visible light.  相似文献   

12.
Lipid Rafts Identified on Synaptic Vesicles from Rat Brain   总被引:2,自引:0,他引:2  
Introduction Lipid rafts are membrane microdomains rich in satu-rated phospholipids, sphingolipids, cholesterol, and as-sociated proteins. They are of great importance in nu-merous biological processes, such as cell signaling, protein sorting,lipid transp…  相似文献   

13.
In this paper we report that the C2 domain of synaptotagmin I (syt I) could associate with lipid rafts of plasma membrane. We demonstrate that phosphatidylinositol 4,5-bisphosphate (PIP2) in the target membrane and Ca^2+ are the key factors to enhance the raft association of the C2 domain. We also found that the raft association of the C2 domain could be fulfilled by either C2A or C2B alone, suggesting that their raft association might be complementary. Finally, we indicate that destroying lipid rafts or blocking syt I-raft association could significantly reduce the Ca^2+-driven release of glutamates. Our data indicate that the raft association of the C2 domain might play an important role in the regulated exocytosis.  相似文献   

14.
Synapsin I bundles F-actin in a phosphorylation-dependent manner   总被引:12,自引:0,他引:12  
M B?hler  P Greengard 《Nature》1987,326(6114):704-707
Synapsin I is a neuron-specific phosphoprotein localized to the cytoplasmic surface of synaptic vesicles. This phosphoprotein is a major substrate for cyclic AMP-dependent and calcium/calmodulin-dependent protein kinases. Its state of phosphorylation can be altered both in vivo and in vitro by a variety of physiological and pharmacological manipulations known to affect synaptic function. Recent direct evidence suggests that it may be involved in the regulation of neurotransmitter release from the nerve terminal. In the nerve terminal, synaptic vesicles are embedded in a cytoskeletal network, consisting in part of actin. We report here the ability of the dephospho-form of synapsin I to bundle F-actin. This bundling activity is reduced when synapsin I is phosphorylated by cAMP-dependent protein kinase and virtually abolished when it is phosphorylated by calcium/calmodulin-dependent protein kinase II or by both kinases. These results, demonstrating an interaction of synapsin I with actin in vitro, support the possibility that synapsin I is involved in clustering of synaptic vesicles at the presynaptic terminal and that the phosphorylation of synapsin I may be involved in regulating the translocation of synaptic vesicles to their sites of release.  相似文献   

15.
M S Perin  V A Fried  G A Mignery  R Jahn  T C Südhof 《Nature》1990,345(6272):260-263
Neurotransmitters are released at synapses by the Ca2(+)-regulated exocytosis of synaptic vesicles, which are specialized secretory organelles that store high concentrations of neurotransmitters. The rapid Ca2(+)-triggered fusion of synaptic vesicles is presumably mediated by specific proteins that must interact with Ca2+ and the phospholipid bilayer. We now report that the cytoplasmic domain of p65, a synaptic vesicle-specific protein that binds calmodulin contains an internally repeated sequence that is homologous to the regulatory C2-region of protein kinase C (PKC). The cytoplasmic domain of recombinant p65 binds acidic phospholipids with a specificity indicating an interaction of p65 with the hydrophobic core as well as the headgroups of the phospholipids. The binding specificity resembles PKC, except that p65 also binds calmodulin, placing the C2-regions in a context of potential Ca2(+)-regulation that is different from PKC. This is a novel homology between a cellular protein and the regulatory domain of protein kinase C. The structure and properties of p65 suggest that it may have a role in mediating membrane interactions during synaptic vesicle exocytosis.  相似文献   

16.
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis   总被引:1,自引:0,他引:1  
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.  相似文献   

17.
The synaptic vesicle protein synaptotagmin I(syt I) is a vesicle transmembrane protein present in synaptic vesicles, which has been proposed as the Ca^2 sensor that regulates secretion. The C2A domain is the membrane proximal part of its cytoplasmic domain. The interaction between C2A and lipid bilayer has been considered to be essential for triggering neurotransmitter release. In the present work, the measurements of membrane surface tension and surface concentration showed that the C2A domain of syt I exhibited two membrane-bound states: the surface adsorption state and the membrane insertion state. The surface absorption state formed in a Ca2~-independent manner with lower affinity, while the membrane insertion state formed with high affinity was only found in the presence of Ca^2 . Both the Ca^2 -independent and Ca^2 -dependent syt I membrane interactions required anionic phospholipids, such as phosphatidylserine (PS). When expressed into rat pheo-chromocytoma (PC12) cells and human embryonic kidney (HEK-293) cells, as demonstrated by immunofluorescence staining and subcellular fractionation, most of the C2A was found at the plasma membrane, even when the cells weredepleted of Ca^2 by incubation with EGTA. These resultssuggested a new molecular mechanism of syt I as a Ca^2 sensor in membrane fusion. Ca^2 -independent surface adsorption might attach syt I to the release site during the docking or priming step. When intracellular Ca^2 increased,syt I triggered the neurotransmitter release following the Ca^2 -dependent penetration into the target membrane.  相似文献   

18.
尖吻蝮蛇毒抗凝血因子I(ACFI)是活化凝血因子X(FXa)结合蛋白,具有显著的抗凝血活性.用荧光光谱研究了Sr^+诱导ACF I的结构稳定性及重新折叠.结果表明,脱钙ACF I(apo-ACFI)可结合两个Sr^+.ACF I与FXa的结合反应不是绝对依赖于Ca^2+,Sr^2+也可以诱导ACF I与FXa的结合反应.盐酸胍诱导的Sr^2+重组ACFI(Sr^2+-ACF I)去折叠过程是一个三态过程,有一个稳定的中间态.像Ca^2+一样,Sr^2+不仅能显著增加ACF I的结构稳定性,而且在不改变变性剂浓度条件下,能诱导去折叠的脱钙ACF I重新折叠成Sr^2+-ACF I的中间态.Sr^2+诱导apo-ACF I重新折叠过程包含快慢两步反应,Sr^2+取代Ca^2+只降低快折叠反应速度,而不影响慢折叠反应速度.这说明,金属离子影响快折叠过程,而慢折叠过程只决定于蛋白质本身性质.  相似文献   

19.
Poskanzer KE  Marek KW  Sweeney ST  Davis GW 《Nature》2003,426(6966):559-563
Neurotransmission requires a balance of synaptic vesicle exocytosis and endocytosis. Synaptotagmin I (Syt I) is widely regarded as the primary calcium sensor for synaptic vesicle exocytosis. Previous biochemical data suggest that Syt I may also function during synaptic vesicle endocytosis; however, ultrastructural analyses at synapses with impaired Syt I function have provided an indirect and conflicting view of the role of Syt I during synaptic vesicle endocytosis. Until now it has not been possible experimentally to separate the exocytic and endocytic functions of Syt I in vivo. Here, we test directly the role of Syt I during endocytosis in vivo. We use quantitative live imaging of a pH-sensitive green fluorescent protein fused to a synaptic vesicle protein (synapto-pHluorin) to measure the kinetics of endocytosis in sytI-null Drosophila. We then combine live imaging of the synapto-pHluorins with photoinactivation of Syt I, through fluorescein-assisted light inactivation, after normal Syt I-mediated vesicle exocytosis. By inactivating Syt I only during endocytosis, we demonstrate that Syt I is necessary for the endocytosis of synaptic vesicles that have undergone exocytosis using a functional Syt I protein.  相似文献   

20.
Neurotransmitters are released by synaptic vesicle fusion at the active zone. The active zone of a synapse mediates Ca2+-triggered neurotransmitter release, and integrates presynaptic signals in regulating this release. Much is known about the structure of active zones and synaptic vesicles, but the functional relation between their components is poorly understood. Here we show that RIM1alpha, an active zone protein that was identified as a putative effector for the synaptic vesicle protein Rab3A, interacts with several active zone molecules, including Munc13-1 (ref. 6) and alpha-liprins, to form a protein scaffold in the presynaptic nerve terminal. Abolishing the expression of RIM1alpha in mice shows that RIM1alpha is essential for maintaining normal probability of neurotransmitter release, and for regulating release during short-term synaptic plasticity. These data indicate that RIM1alpha has a central function in integrating active zone proteins and synaptic vesicles into a molecular scaffold that controls neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号