首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for migraine genes: an overview of current knowledge   总被引:3,自引:0,他引:3  
Migraine is a complex familial condition that imparts a significant burden on society. There is evidence for a role of genetic factors in migraine, and elucidating the genetic basis of this disabling condition remains the focus of much research. In this review we discuss results of genetic studies to date, from the discovery of the role of neural ion channel gene mutations in familial hemiplegic migraine (FHM) to linkage analyses and candidate gene studies in the more common forms of migraine. The success of FHM regarding discovery of genetic defects associated with the disorder remains elusive in common migraine, and causative genes have not yet been identified. Thus we suggest additional approaches for analysing the genetic basis of this disorder. The continuing search for migraine genes may aid in a greater understanding of the mechanisms that underlie the disorder and potentially lead to significant diagnostic and therapeutic applications. Received 16 December 2005; received after revision 9 October 2006; accepted 13 November 2006  相似文献   

2.
Biologically active small molecules represent the basis for chemical biology applications in which small molecules are used as chemical tools to probe biological processes. In this report, we review two approaches to design and synthesize compound libraries for biological screenings, i.e., diversity-oriented synthesis (DOS) and biology-oriented synthesis (BIOS). Received 23 October 2007; received after revision 26 November 2007; accepted 28 November 2007  相似文献   

3.
Untangling the molecular nature of sperm-egg interactions is fundamental if we are to understand fertilization. These phenomena have been studied for many years using biochemical approaches such as antibodies and ligands that interact with sperm or with eggs and their vestments. However, when homologous genetic recombination techniques were applied, most of the phenotypic factors of the gene-manipulated animals believed “essential” for fertilization were found to be dispensable. Of course, all biological systems contain redundancies and compensatory mechanisms, but as a whole the old model of fertilization clearly requires significant modification. In this review, we use the results of gene manipulation experiments in animals to propose the basis for a new vision. Received 26 January 2007; received after revision 7 March 2007; accepted 17 April 2007  相似文献   

4.
The study of candidate genes over the past three decades has yielded notable successes in common-disease genetics. During this time, however, interpretation of genetic association studies has been hampered by the use of clinical cohorts of inadequate power and insufficient information on genetic variation in candidate genes. The unavailability of highthroughput and low-cost genotyping technologies has also limited the scope of complex-disease genetic studies. More recently, however, the sequencing and characterization of variation within the human genome has revolutionized genetic studies and enabled full genome-wide scans for genes associated with disease. The identification of disease-associated (causative) genes has illuminated disease mechanisms. The translation of this knowledge into direct clinical benefit in diagnosis, prognosis and therapy for an individual’s disease still remains a challenge. Received 11 September 2006; received after revision 17 December 2006; accepted 18 January 2007  相似文献   

5.
Research on aging in model organisms has revealed different molecular mechanisms involved in the regulation of the lifespan. Studies on Saccharomyces cerevisiae have highlighted the role of the Sir2 family of genes, human Sirtuin homologs, as the longevity factors. In Caenorhabditis elegans, the daf-16 gene, a mammalian homolog of FoxO genes, was shown to function as a longevity gene. A wide array of studies has provided evidence for a role of the activation of innate immunity during aging process in mammals. This process has been called inflamm-aging. The master regulator of innate immunity is the NF-κB system. In this review, we focus on the several interactions of aging-associated signaling cascades regulated either by Sirtuins and FoxOs or NF-κB signaling pathways. We provide evidence that signaling via the longevity factors of FoxOs and SIRT1 can inhibit NF-κB signaling and simultaneously protect against inflamm-aging process. Received 4 October 2007; received after revision 7 November 2007; accepted 9 November 2007  相似文献   

6.
Coagulation factor VIIa (FVIIa) is an atypical member of the trypsin family of serine proteases. It fails to attain spontaneously its catalytically competent conformation and requires its protein cofactor tissue factor (TF) to accomplish this. Over a number of years, this unique behaviour of FVIIa has prompted investigations of the TF-induced activation mechanism and the zymogenicity determinants in factor VIIa. Factor VIIa has gained additional interest in the past decade because of its development into a clinically useful haemostatic agent. Here, we present an overview of the current knowledge about the TF-induced allosteric activation of FVIIa and the various molecular approaches to enhance the intrinsic activity and efficacy of FVIIa. Received 18 October 2007; received after revision 12 November 2007; accepted 14 November 2007  相似文献   

7.
Mammalian artificial chromosomes (MACs) are safe, stable, non-integrating genetic vectors with almost unlimited therapeutic transgene-carrying capacity. The combination of MAC and stem cell technologies offers a new strategy for stem cell-based therapy, the efficacy of which was confirmed and validated by using a mouse model of a devastating monogenic disease, galactocerebrosidase deficiency (Krabbe’s disease). Therapeutic MACs were generated by sequence-specific loading of galactocerebrosidase transgenes into a platform MAC, and stable, pluripotent mouse embryonic stem cell lines were established with these chromosomes. The transgenic stem cells were thoroughly characterized and used to produce chimeric mice on the mutant genetic background. The lifespan of these chimeras was increased twofold, verifying the feasibility of the development of MAC-stem cell systems for the delivery of therapeutic genes in stem cells to treat genetic diseases and cancers, and to produce cell types for cell replacement therapies. Received 29 July 2008; received after revision 22 September 2008; accepted 24 September 2008  相似文献   

8.
Cardiovascular malformations are the most common type of birth defect and result in significant mortality worldwide. The etiology for the majority of these anomalies remains unknown. Advances in the characterization of the molecular pathways critical for normal cardiac development have led to the identification of numerous genes necessary for this complex morphogenetic process. This work has aided the discovery of an increasing number of single genes being implicated as the cause of human cardiovascular malformations. This review summarizes normal cardiac development and outlines the recent discoveries of the genetic causes of congenital heart disease. Received 4 November 2005; received after revision 14 January 2006; accepted 1 February 2006  相似文献   

9.
Comparative genome analyses reveal that most functional domains of human genes have homologs in widely divergent species. These shared functional domains, however, are differentially shuffled among evolutionary lineages to produce an increasing number of domain architectures. Combined with duplication and adaptive evolution, domain shuffling is responsible for the great phenotypic complexity of higher eukaryotes. Although the domain-shuffling hypothesis is generally accepted, determining the molecular mechanisms that lead to domain shuffling and novel gene creation has been challenging, as sequence features accompanying the formation of known genes have been obscured by accumulated mutations. The growing availability of genome sequences and EST databases allows us to study the characteristics of newly emerged genes. Here we review recent genome-wide DNA and EST analyses, and discuss the three major molecular mechanisms of gene formation: (1) atypical spicing, both within and between genes, followed by adaptation, (2) tandem and interspersed segmental duplications, and (3) retrotransposition events. Received 18 October 2006; received after revision 18 November 2006; accepted 28 November 2006  相似文献   

10.
Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton’s hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.  相似文献   

11.
Summary Of particular concern to the human geneticist are the effects of genetic abnormalities on development. To gain an understanding of these effects it is necessary to engage in a reciprocal process of using knowledge of normal developmental events to elucidate the mechanisms operative in abnormal situations and then of using what is learned about these abnormal situations to expand our understanding of the normal. True developmental genes have not been described in man, although it is likely that they exist, but many developmental abnormalities are ascribable to mutations in genes coding for enzymes and structural proteins. Some of these even produce multiple malformation syndromes with dysmorphic features. These situations provide a precedent for asserting that not only monogenic developmental abnormalities, but also abnormalities resulting from chromosome imbalance must ultimately be explicable in molecular terms. However, the major problem confronted by the investigator interested in the pathogenesis of any of the chromosome anomaly syndromes is to understand how the presence of an extra set of normal genes or the loss of one of two sets of genes has an adverse effect on development. Several molecular mechanisms for which limited precedents exist may be considered on theoretical grounds. Because of the difficulties in studying developmental disorders in man, a variety of experimental systems have been employed. Particularly useful has been the mouse, which provides models for both monogenic and aneuploidy produced abnormalities of development. An example of the former is the mutation oligosyndactylism which in the heterozygous state causes oligosyndactyly and in the homozygous state causes early embryonic mitotic arrest. All whole arm trisomies and monosomies of the mouse can be produced experimentally, and of special interest is mouse trisomy 16 which has been developed as an animal model of human trisomy 21 (Down syndrome). In the long run, the most direct approach to elucidating the genetic problems of human development will involve not only the study of man himself but also of the appropriate experimental models in other species.Acknowledgments. This review was written while the author was a Henry J. Kaiser Senior Fellow at the Center for Advanced Study in the Behavioral Sciences, Palo Alto, California. This work was supported by grants from the National Institutes of Health (GM-24309, HD-03132, HD-15583, HD-17001) and the American Cancer Society (CD-119) and by a contract from the National Institute of Child Health and Human Development (NOI-HD-2858).  相似文献   

12.
An increase in antibiotic resistance and the emergence of new pathogens has led to an urgent need for alternative approaches to infection management. Immunomodulatory molecules that do not target the pathogen directly, but rather selectively enhance and/or alter host defence mechanisms, are attractive candidates for therapeutic development. Natural cationic host defence peptides represent lead molecules that boost innate immune responses and selectively modulate pathogen-induced inflammatory responses. This review discusses recent evidence exploring the mechanisms of cationic host defence peptides as innate immune regulators, their role in the interface of innate and adaptive immunity, and their potential application as beneficial therapeutics in overcoming infectious diseases. Received 3 November 2006; received after revision 14 December 2006; accepted 22 January 2007  相似文献   

13.
DNA transposons in vertebrate functional genomics   总被引:7,自引:0,他引:7  
Genome sequences of many model organisms of developmental or agricultural importance are becoming available. The tremendous amount of sequence data is fuelling the next phases of challenging research: annotating all genes with functional information, and devising new ways for the experimental manipulation of vertebrate genomes. Transposable elements are known to be efficient carriers of foreign DNA into cells. Notably, members of the Tc1/mariner and the hAT transposon families retain their high transpositional activities in species other than their hosts. Indeed, several of these elements have been successfully used for transgenesis and insertional mutagenesis, expanding our abilities in genome manipulations in vertebrate model organisms. Transposon-based genetic tools can help scientists to understand mechanisms of embryonic development and pathogenesis, and will likely contribute to successful human gene therapy. We discuss the possibilities of transposon-based techniques in functional genomics, and review the latest results achieved by the most active DNA transposons in vertebrates. We put emphasis on the evolution and regulation of members of the best-characterized and most widely used Tc1/mariner family.Received 8 June 2004; received after revision 26 October 2004; accepted 18 November 2004  相似文献   

14.
Toll-like receptors (TLRs) are a family of pattern recognition receptors that mediate innate immune responses to stimuli from pathogens or endogenous signals. Under various pathological conditions, the central nervous system (CNS) mounts a well-organized innate immune response, in which glial cells, in particular microglia, are activated. Further, the innate immune system has emerged as a promising target for therapeutic control of development and persistence of chronic pain. Especially, microglial cells respond to peripheral and central infection, injury, and other stressor signals arriving at the CNS and initiate a CNS immune activation that might contribute to chronic pain facilitation. In the orchestration of this limited immune reaction, TLRs on microglia appear to be most relevant in triggering and tailoring microglial activation, which might be a driving force of chronic pain. New therapeutic approaches targeting the CNS innate immune system may achieve the essential pharmacological control of chronic pain. Received 21 November 2006; received after revision 8 January 2007; accepted 7 February 2007  相似文献   

15.
小麦转基因研究现状及展望   总被引:3,自引:0,他引:3  
自二十世纪八十年代开始研究转基因植物以来,小麦作为世界主要粮食来源,其转基因遗传改良受到科学家的广泛关注。目前国内外已有近200例外源基因,主要是抗除草剂类基因、抗病虫基因、品质基因、抗旱耐盐等抗逆基因、雄性不育类基因等,通过基因枪法、农杆菌介导法、花粉管通道法等技术转入小麦的报道。从转单基因到进行多基因组装,从改良各种生物胁迫和非生物胁迫的抗逆性,到改良品质、高产等生理和农艺性状,是未来转基因小麦的研究方向。本文就近二十几年来转基因小麦研究进展及存在问题进行了全面系统的综述和探讨。  相似文献   

16.
Computational techniques are becoming increasingly important in structural and functional biology, in particular as tools to aid the interpretation of experimental results and the design of new systems. This review reports on recent studies employing a variety of computational approaches to unravel the microscopic details of the structure-function relationships in plastocyanin and other proteins belonging to the blue copper superfamily. Aspects covered include protein recognition, electron transfer and protein-solvent interaction properties of the blue copper protein family. The relevance of integrating diverse computational approaches to address the analysis of a complex protein system, such as a cupredoxin metalloprotein, is emphasized.Received 9 May 2003; received after revision 24 November 2003; accepted 28 November 2003  相似文献   

17.
Nutrigenomics has the potential to tailor diets to optimize health, based on knowledge of key genetic polymorphisms. Identification of candidate genes is often based on a priori knowledge of disease processes. However, genome-wide association methods are not only validating previously identified genes and polymorphisms, but also revealing new gene-disease associations not anticipated from prior knowledge. In Crohn’s disease (CD), such studies not only confirm the importance of caspase-activated recruitment domain 15 and major histocompatability complex II molecules, but also reveal strong associations with the proinflammatory cytokine interleukin-23 receptor and autophagy-related 16-like gene. Genes identified to date in CD can be linked into two interrelated pathways: receptor-mediated cytokine induction or autophagocytosis. New genomic technologies need to be matched with innovative methodologies to characterize the likely impact of foods and to take the field to another dimension of value for human diet development and optimized health. Received 2 July 2007; received after revision 31 July 2007; accepted 29 August 2007  相似文献   

18.
Developmental genetics   总被引:1,自引:0,他引:1  
C J Epstein 《Experientia》1986,42(10):1117-1128
Of particular concern to the human geneticist are the effects of genetic abnormalities on development. To gain an understanding of these effects it is necessary to engage in a reciprocal process of using knowledge of normal developmental events to elucidate the mechanisms operative in abnormal situations and then of using what is learned about these abnormal situations to expand our understanding of the normal. True developmental genes have not been described in man, although it is likely that they exist, but many developmental abnormalities are ascribable to mutations in genes coding for enzymes and structural proteins. Some of these even produce multiple malformation syndromes with dysmorphic features. These situations provide a precedent for asserting that not only monogenic developmental abnormalities, but also abnormalities resulting from chromosome imbalance must ultimately be explicable in molecular terms. However, the major problem confronted by the investigator interested in the pathogenesis of any of the chromosome anomaly syndromes is to understand how the presence of an extra set of normal genes or the loss of one of two sets of genes has an adverse effect on development. Several molecular mechanisms for which limited precedents exist may be considered on theoretical grounds. Because of the difficulties in studying developmental disorders in man, a variety of experimental systems have been employed. Particularly useful has been the mouse, which provides models for both monogenic and aneuploidy produced abnormalities of development. An example of the former is the mutation oligosyndactylism which in the heterozygous state causes oligosyndactyly and in the homozygous state causes early embryonic mitotic arrest. All whole arm trisomies and monosomies of the mouse can be produced experimentally, and of special interest is mouse trisomy 16 which has been developed as an animal model of human trisomy 21 (Down syndrome). In the long run, the most direct approach to elucidating the genetic problems of human development will involve not only the study of man himself but also of the appropriate experimental models in other species.  相似文献   

19.
Congenital muscular dystrophy: molecular and cellular aspects   总被引:8,自引:0,他引:8  
The congenital muscular dystrophies are a clinically and genetically heterogeneous group of neuromuscular disorders. Each form has a characteristic phenotype, but there is overlap between some entities and their classification is based on a combination of clinical features and the primary or secondary protein defect. Recent studies have identified the genetic basis of a number of congenital muscular dystrophies (11 genes in total) and have recognised a novel pathological mechanism that highlights the importance of the correct posttranslational processing of proteins, in particular -dystroglycan. Diagnosis of these conditions has been aided by the availability of specific antibodies for each protein and a better understanding of the protein changes that accompany each condition. In this review we present the major molecular, clinical and diagnostic aspects of each group of congenital muscular dystrophy with an emphasis in the more recent developments.Received 11 December 2004; accepted 15 December 2004  相似文献   

20.
Telomeres and telomerase as targets for cancer therapy   总被引:3,自引:0,他引:3  
Telomeres are protective structures located at the ends of all eukaryotic chromosomes. Telomere shortening upon cell division restricts the proliferative capacity of most normal human cells due to the lack of telomerase, an enzyme synthesizing telomeric DNA de novo. Since most tumor cells are reliant on the activity of telomerase to maintain the stability of predominantly short individual telomeres, inhibition of this enzyme presents an attractive approach for a mechanism-based anticancer therapy. Here, we review advances and obstacles in targeting telomerase and telomeres and discuss potential applications of such approaches for the clinic. Received 9 November 2006; received after revision 8 December 2006; accepted 17 January 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号