首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
pH对无机陶瓷膜微滤中药水提液膜过程的影响研究   总被引:1,自引:0,他引:1  
目的研究中药水提液pH的变化对无机陶瓷膜微滤中药水提液膜过程的影响。方法调节甘草水提液的pH值为2、3、4、5、6、7、8,在温度、压力、膜面流速恒定的条件下分别过0.2μmAl2O3无机陶瓷膜,测定不同pH的甘草水提液的膜稳定通量及指标性成分甘草酸的转移率。结果不同pH条件下的甘草水提液的膜稳定通量及指标性成分甘草酸的转移率随着pH的增大有逐渐增大的趋势.在pH=4左右显著增加,pH=7时膜稳定通量最大,甘草酸的含量最高,pH=8的甘草酸转移率最高。结论pH值对无机陶瓷膜微滤甘草水提液的膜过程有很大的影响。  相似文献   

2.
在膜生物反应器处理盥洗废水的工程实践中,由于进水中缺乏氮元素而常发生污泥的非丝状菌膨胀,对反应器的稳定运行产生了很大的影响.本文利用正交试验方法,针对污泥非丝状菌膨胀情况下膜生物反应器的运行状况进行了分析比较.  相似文献   

3.
氢作为一种高效清洁的能源和理想的能源互联媒介,有着广泛的应用场景,被公认将在能源转型过程中发挥举足轻重的作用。本研究从专利分析的视角出发,对全球制氢技术的发展态势进行研究。研究发现,近10年电解水制氢技术研发热度及成果的发展速度遥遥领先于化石燃料制氢技术,且未来还有进一步增长的潜力。电解水技术研究聚焦在质子交换膜电解水技术以及匹配可再生能源电力而进行的电解槽设计、控制技术以及电源系统设计技术。美国和日本是质子交换膜电解水技术的主要输出国,这些地区现有技术体系相对成熟,行业内技术垄断程度较高。质子交换膜电解水技术在我国的研究还处于成长阶段,研发创新仍集中在高校和研究院,创新成果还未完全进入市场。  相似文献   

4.
基于重大工程项目建设社会稳定风险呈现动态传导的特征,深入探讨重大工程项目建设的社会稳定风险传导机理和防范措施。首先,构建了重大工程项目建设社会稳定风险传导链,包括风险源、风险流、风险载体、风险事件和风险结果。然后,分析了重大工程项目建设的社会稳定风险传导机理,并借用沙堆模型对传导机理做了进一步阐述。最后提出从减少社会稳定风险源、阻碍风险传导路径、提高社会风险阀值等三个方面来防范和化解重大工程项目的社会稳定风险。研究有助于认清重大工程项目社会稳定风险的本质和传导规律,有利于从源头上防范社会稳定风险。  相似文献   

5.
提出燃煤串行流化床置换燃烧分离CO2机理,分析了水煤气反应、金属载氧体还原反应热力学关系特性;基于Aspenplus软件,NiO/Ni为载氧体,建立了串行流化床燃料反应器内各种物质的质量平衡、化学平衡和能量平衡模型,对煤置换燃烧分离CO2进行了模拟,研究了燃料反应器温度、水煤比和空气反应器温度对燃料反应器气体产物、载氧体循环倍率以及载氧体理论反应倍率等过程参数的影响;研究结果表明,随着燃料反应器温度的提高,燃料反应器气体产物中H2O体积含量略有升高,相应的CO2体积百分比下降,CO含量的上升比较迅速;煤中硫转化成SO2和H2S排出,两者随燃料反应器温度呈现轴对称、趋势相反的变化关系,SO2随反应温度升高而逐渐递增,而H2S逐渐递减;载氧体循环倍率随燃料反应器温度升高呈幂指数级增加,随空气反应器温度呈幂指数级递减,而与水煤比呈线性增加关系,研究结果为进一步试验研究提供了理论依据和参考.  相似文献   

6.
提出燃煤串行流化床置换燃烧分离CO2机理,分析了水煤气反应、金属载氧体还原反应热力学关系特性;基于Aspen Plus软件,NiO/Ni为载氧体,建立了串行流化床燃料反应器内各种物质的质量平衡、化学平衡和能量平衡模型,对煤置换燃烧分离CO2进行了模拟,研究了燃料反应器温度、水煤比、空气反应器温度对燃料反应器气体产物、载氧体循环倍率、以及载氧体理论反应倍率等过程参数的影响;研究结果表明,随着燃料反应器温度的提高,燃料反应器气体产物中H2O体积含量略有升高,相应的CO2体积百分比下降,CO的含量上升比较迅速;煤中硫转化成SO2和H2S排出,两者随燃料反应器温度呈现轴对称、趋势相反的变化关系,SO2随反应温度升高而逐渐递增,而H2S逐渐递减;载氧体循环倍率随燃料反应器温度升高呈幂指数级增加,随空气反应器温度呈幂指数级递减,而与水煤比呈线性增加关系,研究结果为进一步试验研究提供了理论依据和参考。  相似文献   

7.
热化学硫碘循环是一种有潜力的制氢方式,而碘化氢分解反应是制氢过程的关键步骤,碘化氢的分解转化率决定了制氢效率的高低.为进一步从热力学第二定律的角度对碘化氢分解过程进行分析优化,本文建立了碘化氢分解一维活塞流管式反应器模型,并基于有限时间热力学理论,以系统中熵产率最小为优化目标进行研究.考虑传热、流动和化学反应过程的总熵产率,在给定的混合气体进口温度和混合气体进口压力及氢气产率约束条件下进行优化分析,分别考虑管长度固定和自由的两种情况,利用最优控制理论求解管外的热源温度最优分布.结果表明优化后的反应器中管外热源温度和混合气体温度差值存在相对恒定的子区间,并且管外热源的温度变化范围相对热源线性变化的参考反应器更广.与参考反应器相比,管长固定时(L=3 m)最优反应器的总熵产率降低了51.3%,管长自由变化时总熵产率存在二次最优,此时最优反应器长度L_(opt)=4.91 m,总熵产率相比参考反应器降低了57.6%.总熵产率的降低主要是由降低传热过程不可逆性实现的,适当延长管长可进一步降低反应过程中总熵产率.同时结合工业生产实际对如何实现热源温度最优分布进行了探讨.本文的研究结果对碘化氢分解反应器的尺寸参数和工艺条件设计可提供理论指导.  相似文献   

8.
目的通过考察不同梯度分子量膜对中药水提液物理化学性质的影响,探索中药水提液复杂体系在膜分离过程中的规律。方法测定以0.2μmAl2O3无机陶瓷膜和5万、1万、6千分子量PS膜纯化清络通痹水提液前后各样品的pH、浊度、粘度、电导率、青藤碱含量、总固含物量等指标。结果清络通痹水提液在膜分离前后的pH、浊度、粘度、电导率及青藤碱含量等方面表现出不同的特征。结论膜纯化前后样品的各指标变化趋势呈现一定的相关性。  相似文献   

9.
垂直喷淋式MOCVD反应器中射流影响的研究   总被引:1,自引:0,他引:1  
针对垂直喷淋式MOCVD反应器的射流现象进行数值模拟研究.通过改变反应腔高度、喷口间距、喷口速度、托盘转速等,对反应器内的流场、温度场、浓度场随上述参数的变化进行详细探讨,进一步探索MOCVD反应器中射流影响的规律.通过模拟发现:(1)在喷口下方的反应腔空间,射流速度、温度和浓度均存在周期性波动,此波动由衬底中心到衬底边缘逐渐衰减;(2)衬底中心处的垂直射流速度大于周边的速度,中心浓度高于边缘浓度,中心温度低于边缘温度;(3)增加反应腔高度,减小喷口间距,减小喷口速度、增加衬底转速,均有利于衬底上方轴向速度和反应前体浓度沿径向分布的平缓.  相似文献   

10.
基于Bulk-Micromegas探测器的快中子成像实验中,中子转换质子的转换层效率低是一个瓶颈.利用基于Geant4工具包的蒙特卡洛模拟程序并使用ROOT工具对不同中子源(Am-Be源和14MeV中子源)以及不同转换层结构和厚度对转换效率的影响进行了模拟,得到了转换率达到饱和时反冲质子的能量角度分部信息.结果表明,常规聚乙烯转换膜在转换层厚度为400和1600μm时,对Am-Be源和14MeV中子源的探测效率分别达到饱和,其效率分别为0.12%和0.35%.其次设计了3种新的转换层结构,模拟了转换率以及在气体间隙中的能量沉积.新转换膜的转换效率要明显优于传统转换层的转换效率.最高转换率达到常规转换膜的3倍.  相似文献   

11.
Summary Through their catalytic abilities microbes can increase rates of chemical reactions which would take a very long time to reach equilibrium under abiotic conditions. Microbes also alter the concentration and composition of chemicals in the environment, thereby creating new conditions for further biological and chemical reactions. Rates of degradation and possible indirect consequences on leaching rates in waste repositories are a function of the presence or absence of microbes and of the conditions which allow them to become catalytically active.Microbially mediated reactions are no exception to the rule that all chemical processes are basically governed by thermodynamic laws. Naturally occurring processes proceed in the direction that leads to the minimal potential energy level attained when equilibrium is reached. A continuous supply of energy to an ecosystem in the form of biochemically unstable compounds maintains non-equilibrium conditions, a prerequisite for all chemotrophic life. Energy is released as a chemical reaction progresses towards equilibrium. Microbes scavenge that portion of the free energy of reaction (Gr) which can be converted into biochemically usable forms during the chemical oxidation processes. As electrontransfer catalysts, the microorganisms mediate reactions which are thermodynamically possible thereby stimulating reaction rates. Decomposition and mineralization in systems without a continuous supply of substrates and oxidants will lead to equilibria with minimal free energy levels at which point further microbial action would cease. The differences in the free energy levels of reactions (Gr), represent the maximal energy which is available to microorganisms for maintenance and growth. How much of the released free energy will be conserved in energy-rich bonds, compounds (e.g. ATP), and chemical potentials (e.g. emf) useful for biosynthesis and biological work is characteristic for the microbes involved and the processes and metabolic routes employed.Materials whose elements are not present in the most oxidized form attainable in the oxic environment of our planet are potentially reactive. Microbial activities are associated only with chemical reactions whose free energy changes are exergonic. This should be kept in mind for all investigations related to the role of microbes in repositories or in the layout of proper waste storage conditions. Rigorous application of thermodynamic concepts to environmental microbiology allows one to develop models and design experiments which are often difficult to conceive of in complex natural systems from physiological information alone. Thermodynamic considerations also aid in selecting proper deposition conditions and in carrying out thoughtful experiments in areas related to microbial ecology of waste repositories.  相似文献   

12.
康向东  王平 《中国科学(E辑)》2014,(12):1271-1279
发展高效、安全的储氢材料/技术被公认为是推进氢能规模化商业应用的关键环节.相比于高压气态和低温液态储存方式,材料基固态储氢因能量密度高且安全性好,被认为最有发展前景.在诸多储氢材料中,轻金属配位硼氢化物氢含量多〉10 wt%,在储氢密度方面具有用作车载氢源的潜力,业已成为近年来储氢材料领域的研究热点.在简述轻金属配位硼氢化物储/放氢反应机理研究的基础上,着重从阴/阳离子替代、构建反应复合体系、纳米相结构调制等方面概述了改善硼氢化物综合储/放氢性能的最新研究进展,旨在明确轻金属硼氢化物储氢材料研究中的关键问题及未来研究方向.  相似文献   

13.
In the present study, we have examined the intestinal Na+ transport, through the Na+-H+ exchanger, in ileal brush-border membrane vesicles (BBMV) isolated from spontaneously hypertensive rats (SHR), and normotensive Wistar Kyoto (WKY) rats as a control group. Na+ uptake into ileal BBMV was stimulated in the presence of a proton gradient (pH 5.5 inside/pH 7.5 outside) in SHR and WKY rats, resulting in a transient accumulation (overshoot) in both groups of rats. No overshoot was observed in the absence of a pH gradient. The magnitude of the accumulation was significantly higher in SHR than in WKY rats. Uptake of Na+ at equilibrium was identical in the presence and the absence of a proton gradient and was not changed in SHR. The use of amiloride inhibited pH gradient-driven Na+ uptake in a dose-dependent manner with a Ki of 90 μM and 100 μM for SHR and WKY rats, respectively. The relationship between proton gradient-driven Na+ uptake and external Na+ concentration was saturable and conformed to Michaelis-Menten kinetics in both SHR and WKY rats. Lineweaver-Burk analysis of the pH gradient-driven Na+ uptake indicated values of Vmax that were significantly increased in SHR compared to WKY rats (11.4±0.55 nmol/mg/8 s vs. 4.96±0.78 nmol/mg/8 s for SHR and WKY rats, respectively). In contrast, similar Km values for Na+ were found between SHR and WKY rats (4.0±0.2 mM vs. 4.9±0.6 mM for SHR and WKY rats, respectively). These studies show derangement in ileal BBMV Na+ transport of SHR, which is characterized by increased Na+-H+ exchanger activity. Received 18 December 1996; received after revision 3 February 1997; accepted 7 February 1997  相似文献   

14.
Summary Some correlations between the physicochemical properties of drugs and their pharmacokinetic behaviour are outlined. Based on the permeability characteristics of simple model membranes (porous membrane, lipid membrane) permeation and distribution of drugs in the animal body can be described and understood on simple physico-chemical terms. Some clinically important aspects — the absorption of drugs from the intestinal tract, the passage through the blood-brain-barrier and the renal excretion as governed by passive tubular reabsorption — are discussed in more detail. Thereby it appears that the solubility of a drug in lipid material, which may be suitably expressed as partition coefficient between an organic solvent and a buffer solution of pH 7.4, is a major factor in determining its pharmacokinetic behaviour.  相似文献   

15.
The emphasis placed on electron transfer in connection with oxidation reactions has often resulted in these processes being considered as a group apart from the main class of chemical reactions. Although some oxidations, for example certain exchange reactions between ions in solution, can be reasonably described as electron transfer processes, there are very many other oxidations, whose mechanisms are much better described in the familiar terms of modern organic chemistry.The use of isotopes as tracers has shown, that many oxidations proceed with transfer of atoms or groups from oxidant to reductant andvice versa; the use of the kinetic isotope effect has shown that such transfer is seldom an incidental process, but is almost always a part of the slow step of the reaction. In this paper, oxidations involving the transfer of such species as oxygen atoms, hydride ions, hydrogen atoms, chlorine atoms, and hydroxyl radicals are discussed in terms of mechanism. An attempt is made to show that a graded series of mechanisms is possible ranging from what appear to be pure electron transfer processes at one end to certain atom transfer processes at the other. The latter group belong, in fact, in the familiar realm of ordinary chemical raactions, in which strong bonds are being broken and formed in the activated complex.Contribution from Department of Chemistry, University of British Columbia, Vancouver. — Presented at the Organic Chemistry Symposium of the Chemical Institute of Canada, Ottawa, Dec. 8–9, 1958.  相似文献   

16.
In this Note, we study a system of differential equations representing the kinetics of an enzymatic reaction. For a closed system, and in the domain where it has a biological significance, it is shown that: (i) there exists a unique equilibrium point, which is an asymptotically stable point; (ii) if several enzymes act on the same substrates, the equilibrium values of the substrates concentrations take their values within the range of the equilibrium values achieved with each of these enzymes, (iii) the kinetics of the reaction can be approached by a single first-order differential equation, which may be seen as a generalization of the Michaelis equation.  相似文献   

17.
Numerous proteins in pro-and eukaryotes must cross cellular membranes in order to reach their site of function. Many of these proteins carry signal sequences that are removed by specific signal peptidases during, or shortly after, membrane transport. Signal peptidases have been identified in the rough endoplasmic reticulum, the matrix and inner membrane of mitochondria, the stroma and thylakoid membrane of chloroplasts, the bacterial plasma membrane and the thylakoid membrane of cyanobacteria. The composition of these peptidases varies between one and several subunits. No site-specific inhibitors are known for the majority of these enzymes. Accordingly, signal peptidases recognize structural motifs rather than linear amino acid sequences. Such motifs have become evident by employing extensive site-directed mutagenesis to investigate the anatomy of signal sequences. Analysis of the reaction specificities and the primary sequences of several signal peptidases suggests that the enzymes of the endoplasmic reticulum, the inner mitochondrial membrane and the thylakoid membrane of chloroplasts all have evolved from bacterial progenitors.  相似文献   

18.
Summary Cytochrome c, used as a scavenger for superoxide anion in some oxidase-like reactions of horseradish peroxidase, diminishes the conversion of the starting products to the oxidized forms. This behavior can be used as a tool for determining superoxide in the presence of peroxidases and hydrogen peroxide.  相似文献   

19.
Summary Synthetic kinins (bradykinin, kallidin and met-kallidin) administered via the femoral artery in the isolated hindlimb of the cat elicits vasoconstriction, a reflex on the systemic blood pressure, a stimulation of respiration, and contraction of nictitating membrane. Acetylcholine elicits these reflex reactions in the body too. Atropine blocks this reflex, but not the reactions of kinins. Phenylbutazone administered via the femoral artery blocks the reflex reactions of acetylcholine and kinins as well as the vasoconstriction of histamine and the kinins in the isolated hindlimb. Phenylbutazone elicits by itself a reflex reaction. Of all the synthetic substances, the kinins are the most specific drugs inducing reflex reactions.  相似文献   

20.
LmrP from Lactococcus lactis is a 45-kDa membrane protein that confers resistance to a wide variety of lipophilic compounds by acting as a proton motive force-driven efflux pump. This study shows that both the proton motive force and ligand interaction alter the accessibility of cytosolic tryptophan residues to a hydrophilic quencher. The proton motive force mediates an increase of LmrP accessibility toward the external medium and results in higher drug binding. Residues Asp128 and Asp68, from cytosolic loops, are involved in the proton motive force-mediated accessibility change. Ligand binding does not modify the protein accessibility, but the proton motive force-mediated restructuring is prerequisite for a subsequent accessibility change mediated by ligand binding. Asp142 cooperates with other membrane-embedded carboxylic residues to promote a conformational change that increases LmrP accessibility toward the hydrophilic quencher. This drug binding-mediated reorganization may be related to the transition between the high- and low-affinity drug-binding sites and is crucial for drug release in the extracellular medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号