首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
采用溶胶-凝胶法制备了单斜结构的Li Fe BO3/LBO复合材料(C2/c空间群).通过XRD,SEM,充放电测试、循环伏安、交流阻抗等手段分别对结构、形貌和电化学性能进行了研究.结果表明,与不含LBO的Li Fe BO3相比,复合材料具有较高的放电比容量和良好的循环性能,尤其是当复合材料中含有15.1%LBO时,该材料在C/20倍率下获得了194.6m Ah/g的首次放电比容量,100次循环后放电比容量仍维持在137.0 m Ah/g.循环伏安和交流阻抗测试结果也表明,LBO含量为15.1%的复合材料中Li Fe BO3粒子之间的导电性明显得到改善.  相似文献   

2.
采用溶胶-凝胶法制备了单斜结构的Li Fe BO3/LBO复合材料(C2/c空间群).通过XRD,SEM,充放电测试、循环伏安、交流阻抗等手段分别对结构、形貌和电化学性能进行了研究.结果表明,与不含LBO的Li Fe BO3相比,复合材料具有较高的放电比容量和良好的循环性能,尤其是当复合材料中含有15.1%LBO时,该材料在C/20倍率下获得了194.6m Ah/g的首次放电比容量,100次循环后放电比容量仍维持在137.0 m Ah/g.循环伏安和交流阻抗测试结果也表明,LBO含量为15.1%的复合材料中Li Fe BO3粒子之间的导电性明显得到改善.  相似文献   

3.
采用共沉淀-微波法,利用自制加料装置合成了橄榄石型LiFePO4/C. 利用SEM、交流阻抗及恒流充放电技术对样品进行形貌表征和电化学性能测试. 结果表明微波8min样品具有均匀结构和较好电化学性能;0.2 C充放电表明,首次放电比容量157.81 mAh/g,53周循环后仍为156.15 mAh/g,材料具有良好的循环性能;1C充放电时,第一次放电容量为136.30 mAh/g,经20周循环后容量没有明显衰减,材料的倍率性能较佳.  相似文献   

4.
采用化学还原共沉积法制备了Sn-Sb-Co复合材料,用SEM对其形貌进行表征.根据充放电曲线、循环伏安曲线和交流阻抗谱,探讨了材料的嵌/脱锂行为.热处理后的Sn-Sb-Co复合材料呈不均匀粒状的无定形态结构;Sn-Sb-Co复合电极首次充、放电比容量分别为618,1 325 mAh/g,第20循环的可逆比容量为390 mAh/g,库仑效率为92%.  相似文献   

5.
通过固相烧结法制备了掺钴的LiFePO4/C正极材料. 采用充放电测试、循环伏安和交流阻抗等现代技术测试了样品的电化学性能. 结果表明,750 ℃烧结的掺钴样在2 C倍率电流下首次循环的放电容量达到115 mAh/g. 该样品50次循环的容量衰减率仅为2.61%,电化学性能稳定.  相似文献   

6.
在氯化胆碱/三乙醇胺低共熔溶剂中制备钠离子电池负极材料NaTi2(PO4)3/C,并用X射线衍射、扫描电镜、循环伏安、交流阻抗和恒电流充放电技术研究反应温度对所得NaTi2(PO4)3/C的结构、形貌以及电化学性能的影响.结果表明:不同反应温度制备的材料均是单相介孔NaTi2(PO4)3/C,合成材料的放电比容量随着反应温度的增大先增大后减小.其中140℃合成的NaTi2(PO4)3/C在10 C倍率下循环500圈后放电比容量为116 mAh/g,具有较好的倍率性能和循环稳定性.  相似文献   

7.
以自制的磷酸铁作为铁源和磷源,用高温自生压力法(即RAPET法)合成了LiFe-PO4/C复合材料,分别比较了以葡萄糖、蔗糖或柠檬酸为碳源和以碳酸锂或氢氧化锂为锂源所得LiFePO4/C复合材料电化学性能的影响。利用X射线衍射(XRD)、循环伏安(CV)、交流阻抗(EIS)和充放电测试等方法,分别对样品的晶型和电化学性能等进行了表征和分析。结果表明:以柠檬酸为碳源、碳酸锂为锂源制备的LiFePO4/C复合材料电化学性能更优异,首次放电比容量达到166.1mAh/g。  相似文献   

8.
采用流变相法成功合成了尖晶石Li2ZnTi3O8.X射线衍射(XRD) 分析结果表明所合成的尖晶石颗粒结晶良好.扫描电子显微镜(SEM)测试结果表明,所得Li2ZnTi3O8粒径较小,分散较均匀.将所合成的样品作为锂离子电池电极材料,采用充放电测试和循环伏安测试研究了其电化学性能.电化学性能测试结果表明,该材料的放电比容量和循环性能都较好,在0.05~3.0 V 电压下,以100 mA/g进行充放电,首次放电比容量为234.6 mAh/g,100次循环后放电比容量仍保持在208.5 mAh/g.  相似文献   

9.
LiFePO4/C的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
采用固相烧结法,在惰性气氛下制备了橄榄石型LiFePO4/C正极材料.通过充放电循环实验、循环伏安实验、交流阻抗、拉曼光谱等测试方法,研究了样品的优化制备条件与电化学性能的关系.研究表明,当以草酸亚铁为铁源时,720 ℃烧结的样品以1 C倍率电流充放电时,首次放电容量为113 mAh/g,50循环的放电容量为116 mAh/g,表现出优秀的循环稳定性.在30循环内,样品的电荷传递阻抗随着充放电循环的进行而减小.锂离子扩散系数为1.56×10-8 cm2/s.  相似文献   

10.
以氢氧化锂为锂源,在真空条件下合成了锂离子电池正极材料LiFePO4.采用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征,并对其进行电化学交流阻抗(EIS)、循环伏安(CV)和恒流充放电等电化学性能测试,并与以碳酸锂为锂源制得的材料进行比较.结果表明:两种锂源在真空条件下合成的LiFePO4均具有单一的橄榄石相,而以氢氧化锂为锂源所得的材料粒度更小且分布更均匀,比容量更高.此外,以氢氧化锂为锂源时,通过在原料预烧后的前驱体中引入碳源得到的LiFePO4/C复合正极材料在0.2 C和1.0 C时的首次放电容量分别为138.4 mAh/g和126.8mAh/g,循环30次后仍能分别释放出135.6 mAh/g和123.9 mAh/g的可逆容量.  相似文献   

11.
尖晶石型掺杂锂钛复合氧化物的性能研究   总被引:1,自引:0,他引:1  
陈猛  金江敏  李金媛 《应用科技》2007,34(10):58-60
采用高温固相法合成尖晶石型锂钛复合氧化物,并对材料进行Sn、Cr掺杂改性.采用XRD测试对材料进行表征,恒流充放电,电化学阻抗,循环伏安测试方法对材料进行电化学性能测试.实验结果表明,Sn、Cr复合掺杂提高了材料的容量,其中,ST首次放电容量达到168 mAh/g,SC的首次放电容量达到170 mAh/g.同时降低了材料的放电电压平台,改善了材料的电化学性能.  相似文献   

12.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

13.
∶采用高温固相法合成LiFePO4锂离子电池正极材料,为提高LiFePO4材料的电化学性能,对其进行Ti4 掺杂改性.用XRD、SEM等测试手段对材料进行表征,并对以Li1-xTixFePO4(x=0,0.01,0.03,0.05)为正极的电池进行电化学性能测试.研究表明,掺杂过程中,掺杂离子能与LiFePO4形成晶格完整、有序的单相固溶体;少量的掺杂离子还可以提高材料的电导率和电化学性能,特别是大电流放电性能,其中Li0.97Ti0.03FePO4性能最优,以0.2C5放电,首次放电质量比容量为132.0 mA.h/g,50次循环后仍保持为131.5 mA.h/g.  相似文献   

14.
以Fe3+为铁源,葡萄糖和有机物聚乙烯醇PVA共同为碳源两步碳热还原法合成LiFePO4/C材料.采用XRD,SEM,LAND电池测试系统及电化学工作站等对材料的晶体结构、形貌和电化学性能进行了研究,并对PVA不同时间加入对材料性能的影响做了分析.结果表明:PVA在原料预烧之后加入,所得LiFePO4/C复合材料具有丰富的表面结构,有较小的交流阻抗和很好的充放电性能,0.1C下初始放电比容量达到了167mAh.g-1,且不同倍率下循环性能稳定.  相似文献   

15.
采用自蔓延燃烧法制备钕离子掺杂锰酸锂(LiMn1.99Nd0.01O4)纳米颗粒,通过XRD、SEM、CV等表征分析了材料的晶体结构、微观形貌和电化学性能.结果表明:钕离子掺杂不影响晶体结构,但可减小LiMn2O4颗粒粒径,进而提高其电化学性能.在0.2C倍率下的放电比容量高达125.6 mAh·g-1.在1C倍率下的首次放电容量为118.4 mAh·g-1,循环100次后的放电比容量为110.4 mAh·g-1,容量保持率为93.2%.  相似文献   

16.
利用半固相碳热还原法制备了橄榄石型LiFe1-xNixPO4(x=0,0.02,0.05,0.08)锂离子电池正极材料.并用XRD、充放电测试、循环伏安、电化学阻抗测试等研究了其结构和电化学性能.实验结果表明:所制备材料均具有单一的橄榄石结构,其中材料LiFe0.95Ni0.05,PO4的电化学性能最佳.在0.2C和2.4~4.0V条件下恒流充放电,首次放电比容量可达139.35mAh·g^-1,30次循环后放电比容量仍保持在133.98mAh·g^-1以上,保持率为96.15%.循环伏安和电化学阻抗测试表明材料具有良好的充放电可逆性和较小的阻抗。  相似文献   

17.
以晶态V2O5(c-V2O5)为原料,采用熔融淬冷法成功制取了V2O5干凝胶(VXG)薄膜电极,以所制备的样品作为正极,金属锂为负极组装了纽扣电池。电化学阻抗谱(EIS)分析表明,在放电过程中 ,几乎没有扩散阻抗的存在。循环伏安(CV)、恒流放电(CD)和充放电(DC)结果显示该样品具有较好的综合性能,以 60mA/ g的质量电流密度充放电,其首次放电比容量高达350mAh/ g,充放电效率可达98%,循环75次后,容量保持率仍可达61%。  相似文献   

18.
用机械球磨法制备的C/Al、C/Si复合材料可作为镀离子电池的负极活性物质.研究结果表明,C_(0.7)Al_(0.3)和C_(0.8)Si_(0.2)(原子比)分别可以放出406mAh/g、和1039mAh/g的容量,远超过了原料碳的容量284mAh/g.经10次充放电循环、C_(0.7),Al_(0.3)放电容量衰退至251mAh/g.经20次充放电循环后C_(0.8)Si_(0.2)放电容量仍保持为749mAh/g.容量衰退主要是复合材料中包嵌入Al和Si部分容量衰退较快所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号