首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
设计了一种应用于WiMAX频段的极化可重构天线。天线由交叠放置的两个方环构成的“8”字形超表面和缝隙天线两部分组成,通过机械旋转超表面实现了线极化(LP)、左旋圆极化(LHCP)以及右旋圆极化(RHCP)三种状态的转换。仿真和测量结果表明,该天线实现了线极化和圆极化之间的转换,圆极化状态下的-10 dB相对阻抗带宽为35.4%(2.84 GHz~4.06 GHz),3 dB轴比带宽为10.2%(3.34 GHz~3.7 GHz);线极化状态下-10 dB阻抗带宽为37.4%(2.74 GHz~4 GHz)。天线具有较好的辐射特性,工作频段内增益均高于6 dBi。  相似文献   

2.
正交缝隙耦合馈电宽带圆极化微带天线设计   总被引:1,自引:0,他引:1       下载免费PDF全文
为了实现圆极化微带天线的频带拓宽和增益提高,在缝隙耦合天线的基础上,设计了一种Ku频段正交缝隙耦合馈电的宽带圆极化微带天线。该天线以双层方形贴片为辐射单元,在拓展天线阻抗带宽的同时提高了增益;采用微带线结合正交左旋缝隙结构实现耦合馈电,通过优化缝隙结构改善了天线轴比特性。测量结果表明:阻抗带宽(VSWR2)和轴比带宽(AR3dB)分别达到22.5%和16.2%,轴比带宽内天线增益均大于9dBi。该结构天线以其简单的馈电设计为宽带圆极化微带天线设计提供了一定的参考价值。  相似文献   

3.
设计了一种新型U型开缝圆极化微带天线,天线分为辐射贴片层、缝隙层、反射板。通过等幅度90°相位差的功分器馈电方式,有效的增加了天线的轴比带宽,首先给出了天线单元的轴比、驻波、方向图仿真结果,然后对4×16阵列进行了加工测试,结果显示轴比AR3dB的带宽为24.5%,驻波小于2的带宽为27%,带宽内(4.3GHz~5.5GHz)增益大于19.6dB。  相似文献   

4.
设计出一种平面圆形、小尺寸无线电引信用圆极化微带天线。该天线在±600的扫瞄空间内,天线极化轴比为1.06dB—3.3 dB,增益为4.7 dBi。阐述了设计理论和设计方法,给出了这种圆极化天线的具体设计尺寸、仿真天线方向图、极化轴比图和驻波图。  相似文献   

5.
国际海事卫星地面终端天线阵单元的设计   总被引:2,自引:0,他引:2  
提供了一个详细的国际海事卫星地面终端天线阵单元的设计,该设计采用单馈点圆极化口径耦合的多层微带天线形式,使用低价格、低介电常数的泡沫塑料,以降低成本和拓宽天线的阻抗带宽。测量结果表明,天线的阻抗带宽(电压驻波比,VSWR≤2)和圆极化带宽(轴比AR≤3dB)分别达到18.8%和12.3%。同时,天线在1593MHz的增益达到9.4dBi。  相似文献   

6.
基于开口方形环频率选择表面(FSS),设计一款新型圆极化器,将线极化波转换为圆极化波.在圆极化器中加入串联双H型耦合枝节,利用有限元仿真软件Ansoft HFSS对圆极化器参数进行仿真和优化.结果表明:3 dB轴比的圆极化器带宽达到25.6%,其中,870~1 080 MHz频带内轴比都小于2 dB,S2,1都维持在-1.7 dB以上,圆极化器对馈源天线几乎不存在影响;相比于传统圆极化器,设计的圆极化器具有工作频带宽、结构层数少、模型简单及性能稳定等优点.  相似文献   

7.
小型化平面螺旋天线及其宽频带巴伦的设计   总被引:2,自引:0,他引:2  
介绍一种小型化的平面螺旋天线,该天线具有很宽的频带,在频段0.95~15.20 GHz内,实测反射损耗均小于-10 dB,同时在频段1.4~10.2 GHz内有较好的圆极化辐射特性(轴比小于4 dB).与普通平面螺旋天线比较,该天线较大程度减小了天线横向尺寸,同时通过在天线下放置一圆台背腔,有效增宽了天线3 dB波瓣宽度(达130°).设计了一种指数渐变的微带线到双线的非平衡 平衡阻抗转换巴伦,仿真和实测结果显示,天线具有良好的圆极化和宽频带特性.  相似文献   

8.
论文提出了一款宽频带圆极化多层微带天线,天线具有两个不同尺寸的圆形辐射贴片进而展宽了带宽.采用3dB定向耦合器与天线集成在一起,为天线提供幅度相同,相位相差90°的两路信号来实现圆极化特性.由于该天线结构复杂,设计过程中计算量比较大,文论中采用渐进空间映射算法进行优化,节省了时间,提高了效率.天线优化结果:0.87-2.55GHz的阻抗带宽和0.94-2.16GHz的轴比带宽.对天线加工、测试,测量结果可以实现0.88-2.55GHz的阻抗带宽和0.96-2.16GHz的轴比带宽.通过比较可以看出测量结果与仿真结果吻合较好,进一步验证了空间映射方法的有效性.  相似文献   

9.
圆极化天线具有可接收任意极化电磁波的优点而被广泛使用,为满足通信需求,宽带圆极化天线应运而生。通过对矩形贴片天线进行结构调整得到一种新型宽带圆极化天线,使用电磁仿真软件CST对此天线进行全波时域仿真分析。仿真结果表明,该天线工作频段为3.8~8.1 GHz,在通带内轴比参数AR<3的带宽为4~8 GHz,有效地拓宽了带宽。  相似文献   

10.
设计一种工作在全球定位系统(GPS)L1频段小型化四臂螺旋天线.该天线由弯折的螺旋臂和双层馈电网络组成,与传统的半波长四臂螺旋天线相比,不仅缩短了螺旋臂的长度,而且有效利用了接地面的尺寸,从而在紧凑的空间内仍能保持较高的顶点增益.天线尺寸为20 mm×20 mm×21 mm(0.10λ_0×0.10λ_0×0.11λ_0,λ_0为中心频率1.575 GHz时对应的波长).实测结果表明,|S_(11)|≤-10dB的阻抗带宽为2.9%(1.555~1.600 GHz),轴比≤3 dB的圆极化带宽为14%(1.386~1.602 GHz),在L1频段中心频率处的顶点增益达到4.15 dBi.因此,可应用于小型化的全球定位终端设备中.  相似文献   

11.
设计了一款应用于北斗导航卫星系统(CNSS)和全球导航卫星系统(GNSS)的双频圆极化微带天线,该天线覆盖了1 258~1 278MHz和1 575~1 609MHz频段.天线采用了3dB电桥作为馈电网络,展宽了阻抗带宽的同时也实现了天线的右旋圆极化并提高了圆极化性能;另外为了抵消探针引起的感抗,在探针的顶层串联了电容能更好的实现阻抗匹配,有效地降低了天线的驻波比.通过HFSS软件建模仿真,结果表明,在带宽范围内天线的驻波比1.5;法线方向的圆极化轴比均1.3dB;高频段增益5.45dB,低频段增益5.7dB,辐射特性较好.  相似文献   

12.
一种用于产生OAM波束的集成圆极化天线阵列   总被引:1,自引:0,他引:1  
提出了一种在S波段内产生轨道角动量(OAM)波束的集成圆极化微带天线阵列.天线采用同轴馈电的方式.为了获得良好的圆极化特性,利用CST软件对天线结构参数进行了仿真优化分析,最终确定天线整体尺寸为0.416λ_0×0.416λ_0×0.026λ_0,3-dB轴比带宽为3.79~3.85 GHz,S_(11)-10 dB的工作带宽为3.74~3.96 GHz.该天线结构简单紧凑,易于实现.天线阵列由6个相同的圆极化天线组成,相邻阵列单元沿顺时针方向旋转60°,通过仿真和实验结果得知,在对阵元进行等幅、等相位的馈电的条件下,该天线阵列能够产生模态l=-1的OAM波束,这能够有效避免复杂馈电网络结构的设计.  相似文献   

13.
针对GPS接收机天线的发展需要,结合目前宽频化与圆极化微带天线的设计技术,提出了一种基于非对称U型槽的GPS微带天线。利用在辐射贴片上加载非对称U型槽缝,实现了圆极化与宽频化设计。重点分析当天线左右槽缝长度做非对称变化时,对天线轴比(axial ratio,AR)和圆极化等性能参数的影响。天线仿真及测试结果表明,3 dB圆极化带宽为21 MHz(1.562~1.583 GHz),在中心频率处的右旋圆极化轴比为1.19 dB,天线E面(φ=0°)与H面(φ=90°)的3 dB空域覆盖分别达143°(-76°~67°)和176°(-90°~86°),且右旋圆极化(right-handedcircular polarization,RHCP)电平均大于其交叉极化左旋圆极化(left-handed circular polarization,LHCP)电平,具有较好的阻抗带宽和广角圆极化空域分布特性、较强的抑制交叉极化和抗多径干扰的能力,能满足GPS接收机的实际应用需求。  相似文献   

14.
该文提出用馈电校正的方法来改善圆极化天线的轴比性能.通过增加附加并联枝节改变双馈电点处信号幅度和相位的相对分布,抵消高次模辐射和馈电网络寄生辐射的影响,将高次模辐射和寄生辐射都考虑在内,来实现馈电校正.在X波段采用全波一体化优化方法设计出双馈点宽带圆极化微带天线.该文给出了仿真结果及实测数据.获得的实测结果为:中心频率为10GHz,电压驻波比小于2的带宽为33.85%,圆极化轴比小于3dB的带宽为22.4%.与校正前的结果相比,轴比带宽从16.2%提高到22.4%.  相似文献   

15.
Koch分形在圆极化微带天线中的应用   总被引:1,自引:0,他引:1  
将分形应用于微带天线设计中,方形微带贴片边界为Koch分形曲线形式,同时用探针在贴片对角线上的适当位置馈电,从而实现微带天线的圆极化特性。采用电磁仿真软件CST Microwave Studio?对天线进行了设计,得到了可以工作于GPS系统1228MHz频段的一次和二次分形的圆极化微带天线结构参数。根据设计结果制作了天线样机,并在微波暗室内进行测试,结果表明一次分形和二次分形天线均谐振于1228MHz,相对阻抗带宽、轴比及增益分别为1.5%和1.4%、2.5dB和1.4dB、2.7dB和2.4dB。二次分形天线与一次分形天线相比,轴比特性有明显改善。  相似文献   

16.
设计了一种工作在C波段的5×5小型化低剖面双圆极化微带阵列天线.与传统的阵列相比,通过相邻2×2子阵列的贴片交错,可以缩小单元间距,实现小型化;采用两个T型功分器馈电网络,同层分布,可以拓展带宽.测试结果表明,左右旋圆极化的阻抗带宽(VSWR<2)和轴比带宽(AR<3dB)分别达到20%和16%,在频段5.3-6.36 GHz内,左右旋增益最大值为15.2dBi.天线阵列尺寸为3.05λ0×2.74λ0×0.037λ0.  相似文献   

17.
为了实时控制天线的极化方式,本文提出了极化可重构的S波段圆形贴片天线。该天线由圆形贴片、Y形馈线和2支PIN二极管组成。在圆形贴片的中心设置了接地过孔,便于给PIN二极管施加直流偏置电压。调整直接馈电和耦合馈电方式之间的相位差,控制天线上的电流分布,实现2种圆极化或线极化的工作模式。在辐射贴片和馈线之间引入2支PIN二极管作为开关,使天线分别工作在线极化(LP)、左旋圆极化(LHCP)和右旋圆极化(RHCP)模式。在圆极化模式时,该天线中心频率为2.53 GHz,10 dB回波损耗和3 dB轴比相对带宽分别为6.6%和1.2%。该天线结构简单,便于加工,在无线通信、雷达、无线能量传输等领域具有潜在的应用价值。  相似文献   

18.
设计了一种基于陷波结构的三频微带印刷天线,以平面单极子天线为基础,采用共面波导馈电,通过在辐射贴片和微带线上加载缝隙实现了天线的三频特性。用电磁仿真软件HFSS12对天线进行设计优化,根据仿真结果制作了天线样品,测试结果与仿真结果吻合较好。天线回波损耗大于10dB的工作频段为1.85~2.53GHZ,3.14~4.38GHz和4.87~5.93GHz,可以很好地覆盖Bluetooth(2.4~2.48GHz),WiMAX(3.4~3.6GHz)和WLAN(5.15~5.825GHz)3个频段。在工作频带内阻抗特性和方向图特性良好,可以满足无线通信的要求。  相似文献   

19.
通过对圆环缝隙结构的圆极化天线的理论分析,提出在微带天线接地板上添加十字形槽以拓展天线带宽的方法,并设计出左、右旋圆极化可重构微带天线.实际制作了工作频率为5 GHz的右旋圆极化可重构天线,将仿真和实际测量结果进行比较得出,添加十字形槽的圆极化可重构天线的阻抗带宽为4.45~5.50 GHz.在4.75~5.45 GHz范围内,实测天线相对轴比带宽为14%.这种方法能在不显著增加天线体积的情况下,将天线带宽增加1倍.  相似文献   

20.
设计了一种结构简单的双频圆极化微带缝隙天线.该天线采用微带线耦合馈电,通过4条长短不等的正交缝隙臂和正方形环状缝隙实现了双频圆极化.仿真与测试结果表明:该天线在1.220~1.539 GHz和2.740~3.047 GHz两个频段实现了良好的阻抗匹配,在1.415~1.505 GHz和2.825~2.890 GHz分别实现了圆极化性能,且最大增益均大于3 dBi.该天线具有较宽的工作带宽及良好的辐射特性,其中低频段为右旋圆极化(RHCP),高频段为左旋圆极化(LHCP).天线性能良好且结构简单,实际测量结果与仿真结果吻合一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号