首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文提出了一种适合于驱动异步电动机的GTR电流型逆变器的PWM控制方法。根据电机定子电流矢量在复平面上的轨迹应尽可能接近于圆的原理,推导并确定出这种电流型逆变器的PWM控制模式,并用微机实现了这一控制方法。  相似文献   

2.
本文提出了正弦波电压对时间积分与PWM波形电压对时间积分相等原理,使用作图法、逐次积分比较法计算PWM波形的换相点。并以PWM电流型逆变器为例探讨了微机控制问题。该方法简单、有效。特别适用PWM逆变器的工程控制。  相似文献   

3.
针对EPS电源系统要求输出高质量电压波形的特点,提出了三相电压型PWM逆变器的一种电压电流双闭环控制方法,通过建立三相电压型PWM逆变器在两相同步旋转坐标系下的数学模型,利用电压外环实现对输出电压的稳定控制,电流内环实现对输出电流的控制,仿真证明该方法有效地改善了应急电源系统的动态响应及抗扰能力.  相似文献   

4.
对三相脉宽调制 ( PWM)逆变器近似电流波形进行了计算机辅助研究 .结果表明 ,逆变器电流的平均值和有效值是负载功率因数和调制系数乘积的简单函数 ,这些函数可以用标幺值表示 .采用标幺值方程可以使逆变器设计简单而准确  相似文献   

5.
本文提出了一种新的电流跟踪PWM控制法,即载波反相三角波比较电流跟踪PWM控制法(CR—PWM),详细解释了CR—PWM控制法的工作原理,并通过与传统三角波比较法及滞环控制法的比较,显示出CR-PWM控制法的优点。通过仿真证明了CR-PWM控制法能消除制约当前电流控制型逆变器发展的瓶颈。  相似文献   

6.
采用低频谐波最小化方法,对常规的六拍晶闸管电流源逆变器输出电流波形实施定模脉宽调制(PWM).用离线化确定电流 PWM 波形的最优开关角,并以8086微处理器实现之。实验结果证明,该方法能明显降低感应电动机低频时的转矩脉动,扩大调速范围.  相似文献   

7.
针对三电平脉宽调制(PWM)逆变器运行过程中会产生大量共模电压、高频dv/dt等谐波的问题,采用一种分区域PWM调制策略(Ma-PWM)来抑制PWM变换器的共模电压。通过调制指数将三电平空间矢量重新划分为多个不同的调制区域,在不同的调制区域内采用4种基本矢量类型中的大矢量、中矢量以及小矢量来实现三电平PWM调制算法。分区域PWM调制策略将扇区内部的小区域划分为高、低两个调制区域,并合理选择最邻近的基本电压矢量来合成参考矢量。仿真结果表明:Ma-PWM调制策略在不同负载类型下的共模电压幅值为直流母线电压的1/6;此外,在可变速负载下,PWM逆变器的共模电压幅值不仅能够减小到原来的1/2,而且PWM逆变器输出电流波形的总谐波失真小于5%。该方法不仅能够抑制共模电压,还能够减小PWM逆变器输出电流的总谐波失真。  相似文献   

8.
提出一种新的准谐振直流环节脉宽调制式(PWM)逆变器。该逆变器只采用一个开关器件来产生所有负载条件下的零电压开关(ZVS)间隙。此电路可灵活选择与任何PWM设备同步的谐振环节的开关瞬间,控制电路中可省去电流传感器。详细分析了此准谐振直流环节PWM逆变器的工作原理,提出了实现软开关的设计条件,并通过仿真研究完成了此电路在各种负载条件下运行的可行性分析。给出对三相感应电动机供电的新的准谐振直流环节PWM逆变器的实验结果。  相似文献   

9.
各种PWM控制方式下的电机共模电压比较研究   总被引:1,自引:0,他引:1  
研究了不同PWM控制方式下电机共模电压、轴电压和轴承电流的产生机理,建立了脉宽调制逆变器驱动系统共模回路的等效电路,并由此得到轴电压的计算公式.为研究不同PWM控制方式对电机共模电压的影响,建立了电机共模电压仿真模型,比较了在三种PWM控制方式下电机共模电压的仿真波形,通过对仿真结果的对比分析得到了在SPWM控制方式下电机共模电压最小的结论,为逆变器采用哪种控制方式会有最小的轴电压和轴承电流提供了一定依据.  相似文献   

10.
在提高常规串级凋速装置的功率因数的基础上,研究了能降低逆变电流中谐波成分的逆变控制方案。使用GTO代替常规逆变器中的可控硅,借助次谐波PWM技术选择最佳开关点,并使逆变器触发角a基180°-270°内变化,则能抑制逆变器的谐波电流,还能提高逆变器的功率因数。这套装置用于串级调速的实验表明:电流超前型的功率因数比滞后型的有明显提高,逆变电流中低次谐波大大减少。  相似文献   

11.
本文分析了一种零电压转换正激PWM直一直变换器的谐振参数。通过分析其谐振电路参数,可以获得谐振参数与电路参数之间的关系,从而有利于优化设计此电路。  相似文献   

12.
具有共振直流环节的电压型逆变器是在传统的PWM硬件开关电路上加一个共振环节,构成高频、无开关损耗电压型逆变器。这种电路与目前通用的PWM逆变器相比,具有频率高、噪音低、开关损耗小、系统体积小、电磁干扰小,有较好的输出波形和不需要阻尼电路等优点。  相似文献   

13.
研究了一种改善脉宽调制式(PWM)电流源变频器暂态电流响应特性的有效方法。在变频器PWM开关切换的阶跃变化时,低通滤波器产生的谐波电流能够被开关信号的一个脉冲控制有效抑制。该方法不需设置电流或电压反馈回路,且不会出现器件的开关应力。控制开关的时延可在设计电路常数时预先计算确定。给出了单相和三相变频器的实验结果,与采用其他方法的变频器相比,该方法的变频器电源电流的暂态响应得到了有效改善。  相似文献   

14.
为增强系统惯量和阻尼,虚拟同步控制被广泛应用于港口岸电电源中,但虚拟同步控制的港口岸电电源与船舶PWM整流器负荷之间可能存在交互失稳问题.因此,本文首先根据其多时间尺度控制特性,提出了虚拟同步控制的港口岸电电源的分频段dq阻抗模型.其次,基于所建dq阻抗和广义奈奎斯特稳定判据的稳定性分析表明,港口岸电电源的交流电压环与船舶PWM整流器负荷的直流电压环之间存在控制交互作用,进而会诱发系统振荡.增加港口岸电电源的交流电压比例和谐振系数,或减小船舶PWM整流器负荷的直流侧电压比例系数可增强港口岸电供电系统的稳定性.最后基于硬件在环实验平台,验证了阻抗模型和稳定性分析结果的有效性.  相似文献   

15.
介绍一种移相控制软开关PWM开关式电源 ,简述了工作原理 ,讨论关键器件逆变变压器、谐振电感、谐振电容的参数设计问题 ,分布参数的影响下实现软开关的条件 .说明了常规器件和逆变变压器的设计原则 ,及谐振器件参数的确定方法 ,并且给出了试验结果  相似文献   

16.
为了提高单相PWM整流器输出电压的质量,解决传统控制策略存在参数整定困难的问题,改善小型能源路由器中间级的输入电压,提出了电压外环模糊自适应控制策略。首先,根据电路特征,建立单相PWM整流器的最优数学模型;其次,将模糊控制思想引入电压外环控制策略中,与传统的PI控制相结合,针对传统PI参数的影响,构建模糊规则,计算模糊因子;最后,与比例谐振控制结合,给出了单相PWM整流器电压外环模糊自适应控制。结果表明,所提出的控制策略具有良好的动态特性,可以在一定程度上减少负载波动时输出电压的波动,且在单位功率因数条件下,能够实现整流器的整流或逆变。改进策略可为小型能源路由器能量双向传输方面的研究提供参考。  相似文献   

17.
鉴于软开关DC/DC变换器的应用越来越广泛,由于谐振元件的存在使得变换器的混沌现象变得复杂.本文以Buck ZCS PWM变换器为具体研究对象.借鉴采用模块化的思想,简化了电压反馈控制方式零电流开关 Buck变换器工作状态的分析,建立了变换器不连续导电模式下的系统离散混沌数学模型,为进一步的理论分析和模拟仿真打下基础.根据系统稳定性判据确定了稳定工作区域,得出主要元件参数的稳定工作范围,设计了电压反馈控制Buck变换器的仿真电路,仿真结果验证了理论分析的正确性.  相似文献   

18.
针对目前开关电源滞后臂谐振能量不足难以实现零电压零电流开关(ZVZCS)的问题,本文基于DSP的控制芯片TMS320F2812,在移相全桥变换器电路的滞后臂串联二极管,利用PID控制技术,采用PWM移相全桥软开关技术控制开关电源的开关器件,在宽电压输入的情况下很好地实现了软开关,MATLAB仿真结果表明设计出的软开关技术开关电源具有较高的输出精度、快速的动态响应和很小的超调量等优点.  相似文献   

19.
在LED智能灯控系统中,用以控制灰度的多路独立PWM信号输出模块是必需的,利用NiosⅡ软核方案来实现该模块,高效快捷,集成度高,鲁棒性好,但需植入很多单信号输出PWM组件,由此造成系统芯片硬件资源的浪费,若对既有的单PWM信号输出设计文件进行修改,生成多路输出的PWM片内外设组件,之后再以Avalon总线规范将其和其他组件一起植入NiosII系统.配置生成硬件系统,在相同功能的情况下,可以节约很多硬件资源,实现对系统的极大优化.  相似文献   

20.
减小无刷直流电机转矩脉动的PWM新方式   总被引:3,自引:1,他引:2  
在分析无刷直流电机两两导通双极性脉宽调制(PWM)方式的基础上,提出一种改进的双极性PWM无刷直流电机(BLDCM)控制方式,该方式采用4个功率管同时进行PWM控制,其中同一桥臂上下两个功率管处于互补导通模式.分析了该PWM方式对无刷直流电机续流过程及电磁转矩的影响,与传统的双极性PWM方式相比,采用该双极性PWM方式可以减小转矩脉动,低速时平稳性好,并且适用于快速启、制动和频繁正反转场合.仿真和实验结果表明该双极性PWM方式能够显著改善无刷直流电机的转矩脉动问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号