首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis in the nervous system   总被引:135,自引:0,他引:135  
Yuan J  Yankner BA 《Nature》2000,407(6805):802-809
Neuronal apoptosis sculpts the developing brain and has a potentially important role in neurodegenerative diseases. The principal molecular components of the apoptosis programme in neurons include Apaf-1 (apoptotic protease-activating factor 1) and proteins of the Bcl-2 and caspase families. Neurotrophins regulate neuronal apoptosis through the action of critical protein kinase cascades, such as the phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase pathways. Similar cell-death-signalling pathways might be activated in neurodegenerative diseases by abnormal protein structures, such as amyloid fibrils in Alzheimer's disease. Elucidation of the cell death machinery in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases.  相似文献   

2.
Chiti F  Stefani M  Taddei N  Ramponi G  Dobson CM 《Nature》2003,424(6950):805-808
In order for any biological system to function effectively, it is essential to avoid the inherent tendency of proteins to aggregate and form potentially harmful deposits. In each of the various pathological conditions associated with protein deposition, such as Alzheimer's and Parkinson's diseases, a specific peptide or protein that is normally soluble is deposited as insoluble aggregates generally referred to as amyloid. It is clear that the aggregation process is generally initiated from partially or completely unfolded forms of the peptides and proteins associated with each disease. Here we show that the intrinsic effects of specific mutations on the rates of aggregation of unfolded polypeptide chains can be correlated to a remarkable extent with changes in simple physicochemical properties such as hydrophobicity, secondary structure propensity and charge. This approach allows the pathogenic effects of mutations associated with known familial forms of protein deposition diseases to be rationalized, and more generally enables prediction of the effects of mutations on the aggregation propensity of any polypeptide chain.  相似文献   

3.
Lansbury PT  Lashuel HA 《Nature》2006,443(7113):774-779
The correlation between neurodegenerative disease and protein aggregation in the brain has long been recognized, but a causal relationship has not been unequivocally established, in part because a discrete pathogenic aggregate has not been identified. The complexity of these diseases and the dynamic nature of protein aggregation mean that, despite progress towards understanding aggregation, its relationship to disease is difficult to determine in the laboratory. Nevertheless, drug candidates that inhibit aggregation are now being tested in the clinic. These have the potential to slow the progression of Alzheimer's disease, Parkinson's disease and related disorders and could, if administered presymptomatically, drastically reduce the incidence of these diseases. The clinical trials could also settle the century-old debate about causality.  相似文献   

4.
Chien P  DePace AH  Collins SR  Weissman JS 《Nature》2003,424(6951):948-951
Self-propagating beta-sheet-rich protein aggregates are implicated in a wide range of protein-misfolding phenomena, including amyloid diseases and prion-based inheritance. Two properties have emerged as common features of amyloids. Amyloid formation is ubiquitous: many unrelated proteins form such aggregates and even a single polypeptide can misfold into multiple forms--a process that is thought to underlie prion strain variation. Despite this promiscuity, amyloid propagation can be highly sequence specific: amyloid fibres often fail to catalyse the aggregation of other amyloidogenic proteins. In prions, this specificity leads to barriers that limit transmission between species. Using the yeast prion [PSI+], we show in vitro that point mutations in Sup35p, the protein determinant of [PSI+], alter the range of 'infectious' conformations, which in turn changes amyloid seeding specificity. We generate a new transmission barrier in vivo by using these mutations to specifically disfavour subsets of prion strains. The ability of mutations to alter the conformations of amyloid states without preventing amyloid formation altogether provides a general mechanism for the generation of prion transmission barriers and may help to explain how mutations alter toxicity in conformational diseases.  相似文献   

5.
A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.  相似文献   

6.
Alzheimer‘s disease is a progressive neurodegenerative disorder characterized by the presence of senile plaques primarily composed of amyloid β in brain. Abnor-mal secretion and aggregation of amyloid β are the key events in pathogenesis of Alzheimer‘s disease. Reduction of amyloid β production and inhibition of amyloid β aggregation to form senile plaques are hopeful strategies for the treatment and prevention of Alzheimer‘s disease. In the present study, the silver and immunohistochemical staining methods were applied to discover senile plaques in the hippocampus of Alzheimer‘s disease patients, and then images were processed and three-dimensionally reconstructed by Matlab and AVS software. The structure characteristics of senile plaques were measured through correlation function calculation and fractal dimension by a computer-aided method. Diffuse plaque had no amyloid center, but classic plaque presented compact central core structure; two types of plaques were both of porous structure, but the sizes of their pores were significantly different. Furthermore, there was difference in fractal dimension value between the diffuse plaque and classic plaque in the two staining methods. The comparison of structure characteristics between two types of plaques indicated that they developed independently. Establishment of the methods for reconstructing the three-dimensional structure of senile plaque and analyzing their structure characteristics is helpful for further study on the aggregation mechanism of senile plaque.  相似文献   

7.
Kaganovich D  Kopito R  Frydman J 《Nature》2008,454(7208):1088-1095
The accumulation of misfolded proteins in intracellular amyloid inclusions, typical of many neurodegenerative disorders including Huntington's and prion disease, is thought to occur after failure of the cellular protein quality control mechanisms. Here we examine the formation of misfolded protein inclusions in the eukaryotic cytosol of yeast and mammalian cell culture models. We identify two intracellular compartments for the sequestration of misfolded cytosolic proteins. Partition of quality control substrates to either compartment seems to depend on their ubiquitination status and aggregation state. Soluble ubiquitinated misfolded proteins accumulate in a juxtanuclear compartment where proteasomes are concentrated. In contrast, terminally aggregated proteins are sequestered in a perivacuolar inclusion. Notably, disease-associated Huntingtin and prion proteins are preferentially directed to the perivacuolar compartment. Enhancing ubiquitination of a prion protein suffices to promote its delivery to the juxtanuclear inclusion. Our findings provide a framework for understanding the preferential accumulation of amyloidogenic proteins in inclusions linked to human disease.  相似文献   

8.
Familial dementia caused by polymerization of mutant neuroserpin.   总被引:13,自引:0,他引:13  
Aberrant protein processing with tissue deposition is associated with many common neurodegenerative disorders; however, the complex interplay of genetic and environmental factors has made it difficult to decipher the sequence of events linking protein aggregation with clinical disease. Substantial progress has been made toward understanding the pathophysiology of prototypical conformational diseases and protein polymerization in the superfamily of serine proteinase inhibitors (serpins). Here we describe a new disease, familial encephalopathy with neuroserpin inclusion bodies, characterized clinically as an autosomal dominantly inherited dementia, histologically by unique neuronal inclusion bodies and biochemically by polymers of the neuron-specific serpin, neuroserpin. We report the cosegregation of point mutations in the neuroserpin gene (PI12) with the disease in two families. The significance of one mutation, S49P, is evident from its homology to a previously described serpin mutations, whereas that of the other, S52R, is predicted by modelling of the serpin template. Our findings provide a molecular mechanism for a familial dementia and imply that inhibitors of protein polymerization may be effective therapies for this disorder and perhaps for other more common neurodegenerative diseases.  相似文献   

9.
Zhai RG  Zhang F  Hiesinger PR  Cao Y  Haueter CM  Bellen HJ 《Nature》2008,452(7189):887-891
Neurodegeneration can be triggered by genetic or environmental factors. Although the precise cause is often unknown, many neurodegenerative diseases share common features such as protein aggregation and age dependence. Recent studies in Drosophila have uncovered protective effects of NAD synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) against activity-induced neurodegeneration and injury-induced axonal degeneration. Here we show that NMNAT overexpression can also protect against spinocerebellar ataxia 1 (SCA1)-induced neurodegeneration, suggesting a general neuroprotective function of NMNAT. It protects against neurodegeneration partly through a proteasome-mediated pathway in a manner similar to heat-shock protein 70 (Hsp70). NMNAT displays chaperone function both in biochemical assays and cultured cells, and it shares significant structural similarity with known chaperones. Furthermore, it is upregulated in the brain upon overexpression of poly-glutamine expanded protein and recruited with the chaperone Hsp70 into protein aggregates. Our results implicate NMNAT as a stress-response protein that acts as a chaperone for neuronal maintenance and protection. Our studies provide an entry point for understanding how normal neurons maintain activity, and offer clues for the common mechanisms underlying different neurodegenerative conditions.  相似文献   

10.
11.
Y G Xi  L Ingrosso  A Ladogana  C Masullo  M Pocchiari 《Nature》1992,356(6370):598-601
Scrapie and related animal and human disorders are neurodegenerative diseases characterized by the formation of a modified, partly proteinase-resistant protein (PrP) of the host, which tends to aggregate as amyloid fibrils and accumulate in the brain of infected individuals. There is a general consensus that the pathological form of PrP (PrPSc) is essential for the clinical appearance of the disease, but whether it is part of the scrapie agent or a by-product of viral infection is still controversial. Here we report that treatment of scrapie-infected hamsters with amphotericin B delays the accumulation in the brain of the proteinase-resistant portion of PrPSc by about 30 days without affecting scrapie replication. The consequence is that hamsters treated with amphotericin B developed clinical signs of disease later than infected controls. We argue that the proteinase-resistant portion of PrPSc is necessary for the development of the disease but that it is unlikely to be essential for scrapie replication.  相似文献   

12.
13.
The normal plasma protein serum amyloid P component (SAP) binds to fibrils in all types of amyloid deposits, and contributes to the pathogenesis of amyloidosis. In order to intervene in this process we have developed a drug, R-1-[6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid, that is a competitive inhibitor of SAP binding to amyloid fibrils. This palindromic compound also crosslinks and dimerizes SAP molecules, leading to their very rapid clearance by the liver, and thus produces a marked depletion of circulating human SAP. This mechanism of drug action potently removes SAP from human amyloid deposits in the tissues and may provide a new therapeutic approach to both systemic amyloidosis and diseases associated with local amyloid, including Alzheimer's disease and type 2 diabetes.  相似文献   

14.
Wright CF  Teichmann SA  Clarke J  Dobson CM 《Nature》2005,438(7069):878-881
Incorrect folding of proteins, leading to aggregation and amyloid formation, is associated with a group of highly debilitating medical conditions including Alzheimer's disease and late-onset diabetes. The issue of how unwanted protein association is normally avoided in a living system is particularly significant in the context of the evolution of multidomain proteins, which account for over 70% of all eukaryotic proteins, where the effective local protein concentration in the vicinity of each domain is very high. Here we describe the aggregation kinetics of multidomain protein constructs of immunoglobulin domains and the ability of different homologous domains to aggregate together. We show that aggregation of these proteins is a specific process and that the efficiency of coaggregation between different domains decreases markedly with decreasing sequence identity. Thus, whereas immunoglobulin domains with more than about 70% identity are highly prone to coaggregation, those with less than 30-40% sequence identity do not detectably interact. A bioinformatics analysis of consecutive homologous domains in large multidomain proteins shows that such domains almost exclusively have sequence identities of less than 40%, in other words below the level at which coaggregation is likely to be efficient. We propose that such low sequence identities could have a crucial and general role in safeguarding proteins against misfolding and aggregation.  相似文献   

15.
Fibrillar proteins form structural elements of cells and the extracellular matrix. Pathological lesions of fibrillar microanatomical structures, or secondary fibrillar changes in globular proteins are well known. A special group concerns histologically amorphous deposits, amyloid. The major characteristics of amyloid are: apple green birefringence after Congo red staining of histological sections, and non-branching 7-10nm thick fibrils on electron microscopy revealing a high content of cross beta pleated sheets. About 25 different types of amyloid have been characterised. In animals, AA-amyloid is the most frequent type. Other types of amyloid in animals represent: AIAPP (in cats), AApoAⅠ, AApoAⅡ, localised AL-amyloid, amyloid in odontogenic or mammary tumors and amyloid in the brain. In old dogs Aβ and in sheep APrP^sc-amyloid can be encountered. AA-amyloidosis is a systemic disorder with a precursor in blood, acute phase serum amyloid A (SAA). In chronic inflammatory processes AA-amyloid can be deposited. A rapid crystallization of SAA to amyloid fibrils on small beta-sheeted fragments, the ‘amyloid enhancing factor‘ (AEF), is known and the AEF has been shown to penetrate the enteric barrier. Amyloid fibrils can aggregate from various precursor proteins in vitro in particular at acidic pH and when proteolytic fragments are formed. Molecular chaperones influence this process. Tissue data point to amyloid fibrillogenesis in lysosomes and near cell surfaces. A comparison can be made of the fibrillogenesis in prion diseases and in enhanced AA-amyloidosis. In the reactive form, acute phase SAA is the supply of the precursor protein, whereas in the prion diseases, cell membrane proteins form a structural source. AI3-amyloid in brain tissue of aged dogs showing signs of dementia forms a canine counterpart of senile dementia of the Alzheimer type (ccSDAT) in man. Misfolded proteins remain potential food hazards. Developments concerning prevention of amyloidogenesis and therapy of amyloid deposits are shortly commented.  相似文献   

16.
Tanis蛋白是一种新发现的由189个氨基酸残基组成的蛋白。研究发现,Tanis蛋白具有胰岛素抵抗的现象,抵抗过氧化氢引起的细胞损伤。Tanis是一种跨膜蛋白,可能作为血清淀粉样蛋白A(SAA)的受体存在,通过与SAA相互作用参与糖代谢。在2型糖尿病、炎症反应、心血管疾病以及代谢性疾病之间建立了连接,为了解这些疾病的发生发展提供了新的研究方向。  相似文献   

17.
Much attention has been paid to the natural mechanism of silkworm spinning due to the impressive mechanical properties of the natural fibers. In this work, we studied the effect of Cu(Ⅱ) ions on the secondary structure of Bombyx mori regenerated silk fibroin (SF) in dilute solution by circular dichroism (CD). The results indicate that a given amount of Cu(Ⅱ) induces the SF conformational transition from random coil to β-sheet, however, further addition of Cu(Ⅱ) is unfavorable for this conversion. Meanwhile, the conformational changes induced by Cu(Ⅱ) follow a nucleation-dependent aggregation mechanism, which is similar to that found in Prion protein (PrP) denaturation and Aβ-peptide aggregations, leading to the neurodegenerative disease. This work would help one understand further the natural spinning process of silkworm. Additionally, it would be significant for the study of the nervous system diseases, because silk fibroin, extracted in large amounts from Bombyx mori silkworm gland, could be a proper model to study PrP denaturation and Aβ-peptide aggregations.  相似文献   

18.
19.
 在脑损伤、感染等应激条件的诱导下,中枢神经系统中的小胶质细胞会迅速活化并促进神经炎症的发生。神经退行性疾病中同样存在广泛的慢性神经炎症,神经炎症还可能直接参与诱导了疾病的发生。对阿尔茨海默病等多种神经退行性疾病中炎症的活化机制,以及炎症如何诱导疾病发生和加重疾病进程的前沿研究进展进行了综述。提出找到那些靶向小胶质细胞活化关键位点,并具有良好血脑屏障通透性的药物是下一步的重点研究目标。  相似文献   

20.
李双月  苏华波 《广西科学》2018,25(3):262-267,278
Neural precursor cell-expressed developmentally downregulated 8(NEDD8)是类泛素蛋白家族的一员,其结构与泛素相似,通过E1激活酶、E2结合酶和E3连接酶等酶促级联反应对蛋白进行翻译后修饰,这一过程即为neddylation。Neddylation异常已被证实与癌症、神经退行性疾病和先天性心脏病等多种疾病密切相关。近年来,neddylation和deneddylation(底物上的NEDD8在deneddylation酶的作用下被去除,称为deneddylation)在心血管系统中的作用备受关注,本文将主要阐述neddylation的生物学过程及其在心脏生物学中的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号