首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
塑性上限分析法是计算静荷载作用下吸力锚极限承载力的一种方法,依据塑性上限分析原理,为了计算静荷载与循环荷载共同作用下吸力锚的承载力,建议了一种基于塑性上限分析理论计算静荷载和循环荷载共同作用下软黏土中张紧式吸力锚循环承载力的方法.该方法首先假定在静荷载作用下吸力锚的破坏模式,并依据静力平衡原理计算静荷载在土体中产生的平均剪应力,然后依据循环强度与土体平均剪应力和循环破坏次数的相互关系确定相应的循环强度,将循环荷载对土体的作用转化成土体强度的变化,再假定吸力锚在循环荷载下的破坏模式与静荷载作用下其破坏模式一致,并依照塑性上限分析原理和土体的循环强度计算强度变化后的承载力.为了验证该方法的合理性,进行了1g条件下的吸力锚模型试验,并应用该方法对模型试验结果进行了预测,预测结果与试验结果吻合较好.  相似文献   

2.
将船体结构简化为刚塑性等截面直梁,提出了一种计算船体梁在近场爆炸冲击波作用下发生整体塑性运动响应的理论模型.以该理论模型为基础,研究了船体梁在近场爆炸冲击波作用下的一般运动响应特性,分析了不同爆炸工况及结构几何参数对响应特性的影响.结果表明:在常见爆炸工况下,船体梁的塑性变形表现为先正向上升,后反向下降的过程,并且以反向变形损伤为主;同一爆炸工况下,船体梁的最终塑性变形量与极限弯矩、长度、宽度以及底板厚度之间呈线性关系.  相似文献   

3.
通过非循环理论方法推导出了多轴应力条件下压力管道的热棘轮极限解析解,并讨论了轴向压缩应力对棘轮极限的影响,提出了相应的设计方法,并采用简化有限元方法进行了验证。结果表明,轴向压缩应力会显著降低多轴载荷下压力管道的棘轮极限,本文的理论解与有限元分析结果吻合良好,与只考虑内压引起的环向应力和轴向应力情况相比,本文的解析解更加精确。这说明本文设计方法可用于评估压力管道及类似工况下结构的棘轮极限,具有一定的工程价值。  相似文献   

4.
基于复合材料三维Hashin破坏准则和相应刚度退化理论,使用基于强度理论的脱层损伤预测方法,分析了复合材料船体梁中垂和中拱状态下考虑脱层损伤模式的总纵极限强度. 提出使用折减因子对不考虑脱层的复合材料船体梁极限强度进行折减,以获取考虑脱层损伤模式的复合材料船体梁总纵极限强度的计算方法.  相似文献   

5.
为了能够简单准确地计算服役期内点蚀损伤船体板格的极限强度,选择腐蚀体积为点蚀损伤板的主要评估参数,结合实际船体板格的腐蚀损伤特点,采用有限元数值计算方法,分析点蚀坑形状、有限元单元类型、蚀坑分布和蚀坑深度对板极限强度的影响,以及板的初始柔度、初始变形、长宽比和板边缘线性载荷因子对板极限强度折减因子的影响,并利用回归分析方法,建立了基于腐蚀体积的点蚀损伤船体板格极限强度折减因子的计算公式.结果表明,整套公式的计算结果与有限元计算结果的相对误差仅有极少量在5%,~6%,之间,绝大部分在5%,以内,可用于服役期内点蚀损伤船体板格的安全评估.  相似文献   

6.
2008修订版共同结构规范对船体梁极限强度计算时各种失效模式下的载荷端缩曲线进行了修改,并对单元划分原则及一些特殊部位处理进行了补充规定.新规范必将对同种模型下求得的船体梁极限承载能力产生影响.通过对比2008修订版与2006版共同结构规范,总结了新规范在极限强度部分的变化,并在新规范基础上用PCL语言在MSC.Patran平台上开发一套用于船体梁极限强度计算与评估的可视化计算软件.通过两个规范下的模型计算分析发现,新规范下结构极限强度偏小,且规范的修改对构件间屈服应力明显不同的结构将受到较大影响,对屈服应力几近一致的结构影响较小.对新规范的理解提供参考并提供一套实用、可以推广的船体极限强度计算软件.  相似文献   

7.
将材料本构关系简化成拉压屈服极限不同的理想弹塑性模型,推导了矩形横截面梁在完全弹性状态、单侧塑性状态及双侧塑性状态下依赖于压拉屈服极限比的几何中轴的曲率方程.并将其应用于悬臂梁的变形及各阶段极限荷载的分析,最后利用所得的解研究了材料压拉强度差效应对矩形截面梁塑性极限弯矩的影响.结果表明,考虑材料压拉强度差效应时梁的塑性极限弯矩将明显提高.  相似文献   

8.
用简化方法对集装箱船进行了垂向弯矩和水平弯矩联合作用下的极限强度分析。通过对船体在不同弯曲角度时极限强度的系列计算,得到极限弯矩的相关曲线。发现,由于集装箱船剖面的非对称性及屈曲引起的非线性使得结构构件拉压性能不同,相关曲线是非对称的。根据6艘集装箱船计算结果的统计分析,对适用于集装箱船的相关公式提出了建议。  相似文献   

9.
钢筋混凝土箱拱面内受力全过程试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
进行了钢筋混凝土箱拱面内受力全过程试验.应用通用程序ANSYS建立了钢筋混凝土箱拱的非线性有限元模型,对模型拱面内受力全过程的非线性受力性能进行了分析.对结构破坏模式进行了探讨,并采用极限分析简化算法对极限承载力进行了计算.研究表明,在面内两点非对称荷载作用下,钢筋混凝土箱拱的破坏模式与实肋板拱相似,均属于以材料非线性为主的二类稳定问题.进行钢筋混凝土箱拱的极限承载力计算时,不可忽略几何非线性的影响,应用有限元法分析时应考虑双重非线性的影响.钢筋混凝土箱拱的结构破坏模式满足刚塑性假定,其极限承载力也可用极限分析法进行简化计算,其结果偏于安全.  相似文献   

10.
应用传统的极限分析理论,提出一种改进的刚性-非线性强化近似模型.它较现有的几种刚塑性简化模型更符合实际,因而更合理.在梁的极限分析中采用新的刚塑性模型,推导出极限弯矩公式.文中以矩形截面梁为例,对所得结果与传统公式进行比较,结果表明传统公式可视为文中结果的一个特例.最后,给出便于工程应用的简化公式.文中所提出的刚塑性简化模型也可用于刚架、薄板等结构的极限分析.  相似文献   

11.
考虑到船体结构腐蚀的随机性,给出了随机腐蚀船体板的极限强度分析方法.根据散货船测厚报告中腐蚀数据,研究船舯甲板边板腐蚀数据的分布规律,建立随机腐蚀模型.采用非线性有限元方法对腐蚀板结构的极限强度进行计算分析,通过蒙特卡罗仿真方法计算确定腐蚀甲板边板极限承载能力的概率统计特性,最后对板结构极限承载能力进行可靠性分析.结果表明:甲板边板的腐蚀数据和极限承载能力均符合对数正态分布,船体板的极限应力比与腐蚀体积比成线性反比关系.  相似文献   

12.
针对含裂纹损伤船体板上的初始缺陷(初始变形、焊接残余应力),利用非线性有限元方法进行了仿真模拟以及相关计算,系统地分析了初始变形、焊接残余应力及其组合对不同裂纹情况的船体板在纵向压力下的极限强度影响.通过数值计算结果的对比分析和讨论,得到当裂纹长度较小时,组合初始缺陷对裂纹板极限强度的影响占主导地位,且初始变形更大;当裂纹长度较大时,裂纹损伤对板极限强度的影响占主导地位.  相似文献   

13.
为了评估钢筋混凝土桥墩的极限水平位移,根据塑性铰区变形特性,合理确定塑性铰区长度是非常重要的.基于有限元分析,从理论上给出了桥墩根部纵筋失稳时的长度,并与实验结果进行了比较.通过纵筋失稳分析结果,提出了考虑到材料非线性时桥墩纵筋失稳长度的简化表达式.使用该表达式,可简单推算反复荷载作用下的钢筋混凝土桥墩纵筋失稳长度.  相似文献   

14.
进行了多处损伤LY12CZ铝合金加筋板的疲劳裂纹扩展的分析与试验研究.给出了典型的随机载荷谱下铝合金加筋板多裂纹扩展的预计方法.用组合法和类比法计算多处损伤LY12CZ铝合金加筋板的应力强度因子.考虑每个载荷循环裂纹之间的相互作用影响,以Walker裂纹扩展公式和Willenborg-Chang裂纹扩展公式为基础,用循环续循环进行裂纹累积,用虚拟施加剩余强度载荷和裂尖韧带塑性区连通判据确定临界裂纹尺寸.进行了恒幅谱载荷及程序块谱载荷下加筋板多裂纹的扩展试验研究.对比了铝合金多裂纹扩展的分析预计结果和试验结果,对比结果表明,预测的寿命与试验结果吻合较好.  相似文献   

15.
焊制三通在面内弯矩作用下的塑性极限载荷   总被引:4,自引:0,他引:4  
文中使用ANSYS软件对面内弯矩作用下的焊制管道三通进行了弹塑性有限元应力分析,建立了覆盖常用三通几何尺寸的塑性极限面内弯矩有限元解数据库,并拟合得到高精度的三通塑性极限面内弯矩计算公式,为管道三通元件的强度分析提供了基础数据及方法。  相似文献   

16.
大开口船舶的扭转极限状态   总被引:2,自引:0,他引:2  
给出利用下限定理计算扭转极限状态下船体剖面上塑性剪流分布的方法,以及相应的线性规划问题,根据扭转极限状态下剖面剪应力的分布可计算剖面的极限转矩,对3艘不同尺度的大开口集装箱船用该方法进行了计算,所得极限转矩与主要船级社规范公式计算的波浪转矩设计值进行了比较,从而得到船体在扭转方面安全性的粗略的定性估计,计算结果表明,对大型和超大型集装箱船,扭转方面的安全性必须引起重视,该方法可在大开口船舶计与扭转失效模式的结构可靠性分析中作为计算船体极限转矩的工具。  相似文献   

17.
采用实验与晶体塑性有限元(CPFEM)相结合的方法,对7075-T6铝合金在动态压缩实验中的宏观力学响应及其微观结构的演化进行了分析。通过分离式霍普金森压杆(SHPB)对7075-T6铝合金进行了应变率为2 000 s-1的动态压缩实验,并使用电子背散射衍射技术(EBSD)对实验前后试件的微观结构进行了表征。修改了传统晶体塑性有限元模型中的强化模型和流动准则,引入位错密度作为内部状态变量,并探究了摩擦系数以及位错增殖系数和位错湮灭系数对试件宏观力学性能的影响。结果表明:位错增殖系数增大会导致材料的硬化行为加剧且极限强度提高,位错湮灭系数增大则会导致材料的极限强度下降,且弱化其硬化行为。通过实验与模拟的结果对比可以看出,晶体塑性有限元模型可以较为准确地预测动态压缩过程中试样内部织构的变化趋势,表现为生成了较多的Brass{110}<112>织构和Goss{110}<001>织构。  相似文献   

18.
在船舶与海洋工程的结构理性设计中,结构极限强度是其设计环节的最后一部分,但是船舶与海洋工程的结构极限强度计算也是要求最多且计算最复杂的一部分。对船舶海洋工程进行结构极限强度分析与计算是通过建立适当的船体模型来实现的。一般而言通过对船体模块进行有限元分析法能够获得较为精确的船体模块极限强度,但是这种方法在实际应用中具有一定的局限性。  相似文献   

19.
蜂窝夹芯板因其较好的吸能效果得到广泛应用。蜂窝夹芯板在服役期间常会受到多次冲击,受损蜂窝夹芯板的剩余强度为其能否继续服役提供有效的参考。为研究蜂窝夹芯板多次低速冲击及冲击后蜂窝夹芯板的剩余强度,对蜂窝夹芯板同一位置进行不同能量、不同频次冲击的实验研究,实验表明,相同冲击总能量下,单次高能量冲击比多次低能量冲击所产生的损伤大。采用ABAQUS软件对冲击实验进行仿真计算,将计算结果与实验结果进行对比,结果表明,仿真计算的接触力最大值与实验的接触力最大值较为接近。对含损伤的蜂窝夹芯板进行了压缩剩余强度实验,结合数字图像相关方法同时对蜂窝板两侧凹坑附近的应变进行测量,结果表明,单次高能量冲击的剩余强度比多次低能量冲击的剩余强度低,在压缩过程中,凹坑处应变变化较明显,远离凹坑处的应变变化较小。  相似文献   

20.
基于X射线电子计算机断层扫描技术,建立了反映闭孔泡沫铝真实结构的三维有限元模型.对闭孔泡沫铝准静态和动态压缩力学性能进行了实验和数值模拟,分析了闭孔泡沫铝的变形特性及力学性能,验证了模型的可靠性.结果表明,准静态压缩下,试件主要沿加载轴45°方向产生塑性变形.压缩速率为低速时,其变形模式与准静态相同.闭孔泡沫铝试件截面上结构薄弱处首先出现应力集中,材料达到塑性屈服.在高速压缩下,试件加载端首先达到塑性屈服.比较闭孔泡沫铝不同应变率下的屈服强度,动态压缩下的屈服强度远高于准静态压缩下的.应变率280~700 s-1下,其屈服强度变化不明显,应变率继续升高至2 000 s-1,屈服强度略微提高.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号