首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Gouin E  Egile C  Dehoux P  Villiers V  Adams J  Gertler F  Li R  Cossart P 《Nature》2004,427(6973):457-461
Actin polymerization, the main driving force for cell locomotion, is also used by the bacteria Listeria and Shigella and vaccinia virus for intracellular and intercellular movements. Seminal studies have shown the key function of the Arp2/3 complex in nucleating actin and generating a branched array of actin filaments during membrane extension and pathogen movement. Arp2/3 requires activation by proteins such as the WASP-family proteins or ActA of Listeria. We previously reported that actin tails of Rickettsia conorii, another intracellular bacterium, unlike those of Listeria, Shigella or vaccinia, are made of long unbranched actin filaments apparently devoid of Arp2/3 (ref. 4). Here we identify a R. conorii surface protein, RickA, that activates Arp2/3 in vitro, although less efficiently than ActA. In infected cells, Arp2/3 is detected on the rickettsial surface but not in actin tails. When expressed in mammalian cells and targeted to the membrane, RickA induces filopodia. Thus RickA-induced actin polymerization, by generating long actin filaments reminiscent of those present in filopodia, has potential as a tool for studying filopodia formation.  相似文献   

2.
T P Loisel  R Boujemaa  D Pantaloni  M F Carlier 《Nature》1999,401(6753):613-616
Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, alpha-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.  相似文献   

3.
Miki H  Yamaguchi H  Suetsugu S  Takenawa T 《Nature》2000,408(6813):732-735
Neural Wiskott-Aldrich syndrome protein (N-WASP) functions in several intracellular events including filopodium formation, vesicle transport and movement of Shigella frexneri and vaccinia virus, by stimulating rapid actin polymerization through the Arp2/3 complex. N-WASP is regulated by the direct binding of Cdc42 (refs 7, 8), which exposes the domain in N-WASP that activates the Arp2/3 complex. A WASP-related protein, WAVE/Scar, functions in Rac-induced membrane ruffling; however, Rac does not bind directly to WAVE, raising the question of how WAVE is regulated by Rac. Here we demonstrate that IRSp53, a substrate for insulin receptor with unknown function, is the 'missing link' between Rac and WAVE. Activated Rac binds to the amino terminus of IRSp53, and carboxy-terminal Src-homology-3 domain of IRSp53 binds to WAVE to form a trimolecular complex. From studies of ectopic expression, we found that IRSp53 is essential for Rac to induce membrane ruffling, probably because it recruits WAVE, which stimulates actin polymerization mediated by the Arp2/3 complex.  相似文献   

4.
Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck   总被引:47,自引:0,他引:47  
Eden S  Rohatgi R  Podtelejnikov AV  Mann M  Kirschner MW 《Nature》2002,418(6899):790-793
Rac signalling to actin -- a pathway that is thought to be mediated by the protein Scar/WAVE (WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein -- has a principal role in cell motility. In an analogous pathway, direct interaction of Cdc42 with the related protein N-WASP stimulates actin polymerization. For the Rac-WAVE pathway, no such direct interaction has been identified. Here we report a mechanism by which Rac and the adapter protein Nck activate actin nucleation through WAVE1. WAVE1 exists in a heterotetrameric complex that includes orthologues of human PIR121 (p53-inducible messenger RNA with a relative molecular mass (M(r)) of 140,000), Nap125 (NCK-associated protein with an M(r) of 125,000) and HSPC300. Whereas recombinant WAVE1 is constitutively active, the WAVE1 complex is inactive. We therefore propose that Rac1 and Nck cause dissociation of the WAVE1 complex, which releases active WAVE1-HSPC300 and leads to actin nucleation.  相似文献   

5.
Kuo SC  McGrath JL 《Nature》2000,407(6807):1026-1029
The actin-based motility of the bacterium, Listeria monocytogenes, is a model system for understanding motile cell functions involving actin polymerization. Although the biochemical and genetic aspects of Listeria motility have been intensely studied, biophysical data are sparse. Here we have used high-resolution laser tracking to follow the trailing ends of Listeria moving in the lamellae of COS7 cells. We found that pauses during motility occur frequently and that episodes of step-like motion often show pauses spaced at about 5.4 nm, which corresponds to the spatial periodicity of F-actin. We occasionally observed smaller steps (<3 nm), as well as periods of motion with no obvious pauses. Clearly, bacteria do not sense cytoplasmic viscoelasticity because they fluctuate 20 times less than adjacent lipid droplets. Instead, bacteria bind their own actin 'tails, and the anchoring proteins can 'step' along growing filaments within the actin tail. Because positional fluctuations are unusually small, the forces of association and propulsion must be very strong. Our data disprove the brownian ratchet models and limit alternative models, such as the 'elastic' brownian ratchet or the 'molecular' ratchet.  相似文献   

6.
The glomerular filtration barrier in the kidney is formed in part by a specialized intercellular junction known as the slit diaphragm, which connects adjacent actin-based foot processes of kidney epithelial cells (podocytes). Mutations affecting a number of slit diaphragm proteins, including nephrin (encoded by NPHS1), lead to renal disease owing to disruption of the filtration barrier and rearrangement of the actin cytoskeleton, although the molecular basis for this is unclear. Here we show that nephrin selectively binds the Src homology 2 (SH2)/SH3 domain-containing Nck adaptor proteins, which in turn control the podocyte cytoskeleton in vivo. The cytoplasmic tail of nephrin has multiple YDxV sites that form preferred binding motifs for the Nck SH2 domain once phosphorylated by Src-family kinases. We show that this Nck-nephrin interaction is required for nephrin-dependent actin reorganization. Selective deletion of Nck from podocytes of transgenic mice results in defects in the formation of foot processes and in congenital nephrotic syndrome. Together, these findings identify a physiological signalling pathway in which nephrin is linked through phosphotyrosine-based interactions to Nck adaptors, and thus to the underlying actin cytoskeleton in podocytes. Simple and widely expressed SH2/SH3 adaptor proteins can therefore direct the formation of a specialized cellular morphology in vivo.  相似文献   

7.
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen capable of rapid movement through the host cell cytoplasm. The biophysical basis of the motility of L. monocytogenes is an interesting question in its own right, the answer to which may shed light on the general processes of actin-based motility in cells. Moving intracellular bacteria display phase-dense 'comet tails' made of actin filaments, the formation of which is required for bacterial motility. We have investigated the dynamics of the actin filaments in the comet tails using the technique of photoactivation of fluorescence, which allows monitoring of the movement and turnover of labelled actin filaments after activation by illumination with ultraviolet light. We find that the actin filaments remain stationary in the cytoplasm as the bacterium moves forward, and that length of the comet tails is linearly proportional to the rate of movement. Our results imply that the motile mechanism involves continuous polymerization and release of actin filaments at the bacterial surface and that the rate of filament generation is related to the rate of movement. We suggest that actin polymerization provides the driving force for bacterial propulsion.  相似文献   

8.
Sallee NA  Rivera GM  Dueber JE  Vasilescu D  Mullins RD  Mayer BJ  Lim WA 《Nature》2008,454(7207):1005-1008
Enterohaemorrhagic Escherichia coli attaches to the intestine through actin pedestals that are formed when the bacterium injects its protein EspF(U) (also known as TccP) into host cells. EspF(U) potently activates the host WASP (Wiskott-Aldrich syndrome protein) family of actin-nucleating factors, which are normally activated by the GTPase CDC42, among other signalling molecules. Apart from its amino-terminal type III secretion signal, EspF(U) consists of five-and-a-half 47-amino-acid repeats. Here we show that a 17-residue motif within this EspF(U) repeat is sufficient for interaction with N-WASP (also known as WASL). Unlike most pathogen proteins that interface with the cytoskeletal machinery, this motif does not mimic natural upstream activators: instead of mimicking an activated state of CDC42, EspF(U) mimics an autoinhibitory element found within N-WASP. Thus, EspF(U) activates N-WASP by competitively disrupting the autoinhibited state. By mimicking an internal regulatory element and not the natural activator, EspF(U) selectively activates only a precise subset of CDC42-activated processes. Although one repeat is able to stimulate actin polymerization, we show that multiple-repeat fragments have notably increased potency. The activities of these EspF(U) fragments correlate with their ability to coordinate activation of at least two N-WASP proteins. Thus, this pathogen has used a simple autoinhibitory fragment as a component to build a highly effective actin polymerization machine.  相似文献   

9.
A Husain-Chishti  A Levin  D Branton 《Nature》1988,334(6184):718-721
Protein 4.9, first identified as a component of the human erythrocyte membrane skeleton, binds to and bundles actin filaments. Protein 4.9 is a substrate for various kinases, including a cyclic AMP(cAMP)-dependent one, in vivo and in vitro. We show here that phosphorylation of protein 4.9 by the catalytic subunit of cAMP-dependent protein kinase reversibly abolishes its actin-bundling activity, but phosphorylation by protein kinase C has no such effect. A quantitative immunoassay showed that human erythrocytes contain 43,000 trimers of protein 4.9 per cell, which is equivalent to one trimer for each actin oligomer in these red blood cells. As analogues of protein 4.9 have been identified together with analogues of other erythroid skeletal proteins in non-erythroid tissues of numerous vertebrates, phosphorylation and dephosphorylation of protein 4.9 may be the basis for a mechanism that regulates actin bundling in many cells.  相似文献   

10.
Myosin-V is a processive actin-based motor.   总被引:25,自引:0,他引:25  
Class-V myosins, one of 15 known classes of actin-based molecular motors, have been implicated in several forms of organelle transport, perhaps working with microtubule-based motors such as kinesin. Such movements may require a motor with mechanochemical properties distinct from those of myosin-II, which operates in large ensembles to drive high-speed motility as in muscle contraction. Based on its function and biochemistry, it has been suggested that myosin-V may be a processive motor like kinesin. Processivity means that the motor undergoes multiple catalytic cycles and coupled mechanical advances for each diffusional encounter with its track. This allows single motors to support movement of an organelle along its track. Here we provide direct evidence that myosin-V is indeed a processive actin-based motor that can move in large steps approximating the 36-nm pseudo-repeat of the actin filament.  相似文献   

11.
S T Brady  R J Lasek  R D Allen  H L Yin  T P Stossel 《Nature》1984,310(5972):56-58
The actions of actin-based microfilaments in cell motility suggest a possible role in the mechanism of fast axonal transport, but the pharmacological data evaluating their role in this process are equivocal. Moreover, microfilaments are difficult to preserve and identify in ultrastructural studies, so the organization and function of axonal actin has remained uncertain. We have now evaluated the role of actin microfilaments in intracellular transport of membranous organelles using video-enhanced contrast microscopy and gelsolin to analyse fast axonal transport directly in isolated axoplasm from the squid giant axon. With this preparation it is possible to perfuse axoplasm with large molecules that do not cross the plasmalemma, while controlling cation levels. The 90,000-molecular weight protein gelsolin depolymerizes actin microfilaments in micromolar Ca2+, but not in the absence of Ca2+. Axonal transport of membranous organelles has previously been shown to be unaffected by levels of Ca2+ up to 10 microM. In the presence of EGTA, gelsolin has no effect on the movement of membranous organelles, but in the presence of 10 microM Ca2+ it completely blocks transport of all membranous organelles. No changes in the organization of the axoplasm were detected. These results and results using other probes for actin are consistent with the hypothesis that actin-based microfilaments are involved in the movement of membranous organelles in the axon.  相似文献   

12.
In cells, actin polymerization at the plasma membrane is induced by the recruitment of proteins such as the Arp2/3 complex, and the zyxin/VASP complex. The physical mechanism of force generation by actin polymerization has been described theoretically using various approaches, but lacks support from experimental data. By the use of reconstituted motility medium, we find that the Wiskott Aldrich syndrome protein (WASP) subdomain, known as VCA, is sufficient to induce actin polymerization and movement when grafted on microspheres. Changes in the surface density of VCA protein or in the microsphere diameter markedly affect the velocity regime, shifting from a continuous to a jerky movement resembling that of the mutated 'hopping' Listeria. These results highlight how simple physical parameters such as surface geometry and protein density directly affect spatially controlled actin polymerization, and play a fundamental role in actin-dependent movement.  相似文献   

13.
A Tyr/Ser protein phosphatase encoded by vaccinia virus.   总被引:51,自引:0,他引:51  
K L Guan  S S Broyles  J E Dixon 《Nature》1991,350(6316):359-362
Protein tyrosine phosphorylation is associated with alterations in receptor activity, cellular proliferation and modulation of the cell cycle. Inappropriate tyrosine phosphorylation can lead to unrestrained cell growth and oncogenesis. Enzymes important in tyrosine dephosphorylation have also been described. Protein tyrosine phosphatases (PTPases) consist of two families. There is a receptor-like family of PTPases with an extracellular domain, transmembrane-spanning region and typically two repeated phosphatase domains. Proteins of the non-receptor-like family have a single catalytic phosphatase domain, show a substrate specificity for Tyr phosphate and will not hydrolyse Ser or Thr phosphate. Here we report that the vaccinia virus genome contains an open reading frame which shares amino-acid sequence identity with the PTPases. The purified protein encoded by the vaccinia virus H1 open reading frame expressed in bacteria hydrolyses substrates containing phosphotyrosine and phosphoserine. Mutagenesis of an essential Cys in the vaccinia phosphatase abolishes catalytic activity directed towards both substrates, suggesting that hydrolysis proceeds by a common mechanism. Understanding the function of the H1-encoded protein will help to define the role of the phosphatase in viral replication and pathogenesis.  相似文献   

14.
R J Adams  T D Pollard 《Nature》1986,322(6081):754-756
Eukaryotic cells are dependent on their ability to translocate membraneous elements about the cytoplasm. In many cells long translocations of organelles are associated with microtubules. In other cases, such as the rapid cytoplasmic streaming in some algae, organelles appear to be propelled along actin filaments. It has been assumed, but not proven, that myosin produces these movements. We have tested vesicles from another eukaryotic cell for their ability to move on the exposed actin bundles of Nitella as an indiction that actin-based organelle movements may be a general property of cells. We found that organelles from Acanthamoeba castellanii can move along Nitella actin filaments. Here, we report two different experiments indicating that the single-headed non-polymerizable myosin isozyme myosin-I is responsible for this organelle motility. First, monoclonal antibodies to myosin-I inhibit movement, but antibodies that inhibit double-headed myosin-II do not. Second, approximately 20% of the myosin-I in homogenates co-migrates with motile vesicles during Percoll density-gradient ultracentrifugation. This is the first indication of a role for myosin-I within the cell and supports the suggestion of Albanesi et al. that myosin-I moves vesicles in this way.  相似文献   

15.
Myosin V orientates the mitotic spindle in yeast   总被引:15,自引:0,他引:15  
Yin H  Pruyne D  Huffaker TC  Bretscher A 《Nature》2000,406(6799):1013-1015
Coordination of spindle orientation with the axis of cell division is an essential process in all eukaryotes. In addition to ensuring accurate chromosomal segregation, proper spindle orientation also establishes differential cell fates and proper morphogenesis. In both animal and yeast cells, this process is dependent on cytoplasmic microtubules interacting with the cortical actin-based cytoskeleton, although the motive force was unknown. Here we show that yeast Myo2, a myosin V that translocates along polarized actin cables into the bud, orientates the spindle early in the cell cycle by binding and polarizing the microtubule-associated protein Kar9 (refs 7-9). The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles and vacuolar elements, making it a pivotal component of yeast cell polarization.  相似文献   

16.
J H Hartwig  M Thelen  A Rosen  P A Janmey  A C Nairn  A Aderem 《Nature》1992,356(6370):618-622
AGONISTS that stimulate protein kinase C (PKC) induce profound changes in cell morphology correlating with the reorganization of submembranous actin, but no direct connection between PKC and actin assembly has been identified. The myristoylated, alanine-rich C kinase substrate (MARCKS) binds calmodulin and is a predominant, specific substrate of PKC which is phosphorylated during macrophage and neutrophil activation , growth factor-dependent mitogenesis and neurosecretion; it is redistributed from plasma membrane to cytoplasm when phosphorylated and is involved in leukocyte motility. Here we report that MARCKS is a filamentous (F) actin crosslinking protein, with activity that is inhibited by PKC-mediated phosphorylation and by binding to calcium-calmodulin. MARCKS may be a regulated crossbridge between actin and the plasma membrane, and modulation of the actin crosslinking activity of the MARCKS protein by calmodulin and phosphorylation represents a potential convergence of the calcium-calmodulin and PKC signal transduction pathways in the regulation of the actin cytoskeleton.  相似文献   

17.
J P Brown  D R Twardzik  H Marquardt  G J Todaro 《Nature》1985,313(6002):491-492
Epidermal growth factor (EGF) and transforming growth factor type I (TGF) are polypeptides of 53 and 50 amino acid residues, respectively. Both bind to EGF receptor, a 1,200-residue transmembranous glycoprotein, leading to phosphorylation of the receptor, enhancement of its tyrosine-specific kinase activity and ultimately to stimulation of cell growth. We report here that a 140-residue polypeptide encoded by one of the early genes of vaccinia virus (VV) is related closely to EGF and TGF. The presence of putative signal and transmembranous sequences further suggests that the viral protein might be an integral membrane protein, but that, as in the case of EGF itself, the membrane-associated form may be the precursor of a soluble growth factor. Production of EGF-like growth factors by virally infected cells could account for the proliferative diseases associated with members of the poxvirus family such as Shope fibroma virus, Yaba tumour virus, and molluscum contagiosum virus (MCV).  相似文献   

18.
Microbial pathogenesis and cytoskeletal function   总被引:38,自引:0,他引:38  
Gruenheid S  Finlay BB 《Nature》2003,422(6933):775-781
Pathogenic microbes subvert normal host-cell processes to create a specialized niche, which enhances their survival. A common and recurring target of pathogens is the host cell's cytoskeleton, which is utilized by these microbes for purposes that include attachment, entry into cells, movement within and between cells, vacuole formation and remodelling, and avoidance of phagocytosis. Our increased understanding of these processes in recent years has not only contributed to a greater comprehension of the molecular causes of infectious diseases, but has also revealed fundamental insights into normal functions of the cytoskeleton. From the use of bacterial toxins to investigate Rho family GTPases to in vitro studies of actin polymerization using Listeria and Shigella, the study of pathogenesis has provided important tools to probe cytoskeletal function.  相似文献   

19.
Vaccinia virus encodes VGF, an early protein of relative molecular mass 19,000 (19K) which, from amino-acid residues 45 to 85, is homologous in 19 residues to epidermal growth factor (EGF), and transforming growth factor-alpha (TGF-alpha). The conserved sequence includes a region of high homology (6 out of 10 amino acids) from residues 71 to 80, corresponding to the third disulphide loop of both EGF and TGF-alpha. This region has recently been shown to contain a binding region of TGF-alpha for the EGF receptor, and this raises the question of whether vaccinia virus utilizes the EGF receptor in order to bind to and infect cells. We now show that occupancy of the EGF receptor inhibits vaccinia virus infection. Inhibition is observed in a dose-dependent fashion by pre-treatment with either EGF or synthetic decapeptide antagonists of EGF's mitogenic activity which correspond to the sequence of the third disulphide loop of VGF or TGF-alpha. The relative ability of the peptides to inhibit vaccinia virus infection parallels their binding affinity to the EGF receptor.  相似文献   

20.
E Schwob  R P Martin 《Nature》1992,355(6356):179-182
Actin, a major cytoskeletal component of all eukaryotic cells, is one of the most highly conserved proteins. It is involved in various cellular processes such as motility, cytoplasmic streaming, chromosome segregation and cytokinesis. The actin from the yeast Saccharomyces cerevisiae, encoded by the essential ACT1 gene, is 89% identical to mouse cytoplasmic actin and is involved in the organization and polarized growth of the cell surface. We report here the characterization of ACT2, a previously undescribed yeast split gene encoding a putative protein (391 amino acids, relative molecular mass (Mr) 44,073) that is 47% identical to yeast actin. The requirement of the ACT2 gene for vegetative growth of yeast cells and the existence of related genes in other eukaryotes indicate an important and conserved role for these actin-like proteins. Superimposition of the Act2 polypeptide onto the three-dimensional structure of known actins reveals that most of the divergence occurred in loops involved in actin polymerization, DNase I and myosin binding, leaving the core domain mainly unaffected. To our knowledge, the Act2 protein from S. cerevisiae is the first highly divergent actin molecule described. Structural and physiological data suggest that the Act2 protein might have an important role in cytoskeletal reorganization during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号