首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Prior studies have reported that metallothionein I/II (MT) promote regenerative axonal sprouting and neurite elongation of a variety of central nervous system neurons after injury. In this study, we evaluated whether MT is capable of modulating regenerative axon outgrowth of neurons from the peripheral nervous system. The effect of MT was firstly investigated in dorsal root ganglion (DRG) explants, where axons were scratch-injured in the presence or absence of exogenous MT. The application of MT led to a significant increase in regenerative sprouting of neurons 16 h after injury. We show that the pro-regenerative effect of MT involves an interaction with the low-density lipoprotein receptor megalin, which could be blocked using the competitive antagonist RAP. Pre-treatment with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 also completely abrogated the effect of exogenous MT in promoting axonal outgrowth. Interestingly, we only observed megalin expression in neuronal soma and not axons in the DRG explants. To investigate this matter, an in vitro injury model was established using Campenot chambers, which allowed the application of MT selectively into either the axonal or cell body compartments after scratch injury was performed to axons. At 16 h after injury, regenerating axons were significantly longer only when exogenous MT was applied solely to the soma compartment, in accordance with the localized expression of megalin in neuronal cell bodies. This study provides a clear indication that MT promotes axonal regeneration of DRG neurons, via a megalin- and MAPK-dependent mechanism.  相似文献   

2.
3.
Burn injury causes an immunosuppression associated with suppressed adaptive immune function. Dendritic cells (DCs) are APCs for which signaling via their Toll-like receptors (TLRs) induces their maturation and activation, which is essential for the adaptive immune response. In this study, we examined if burn injury alters the TLR activity of splenic DCs. After injury, we noticed that DC functions were impaired, characterized by a suppressed capacity to prime naive T cells when triggering the TLR4 signaling cascade using specific ligands (LPS or rHSP60). The observed perturbations on LPS-primed DCs isolated from burned mice exhibited significantly diminished IL-12p40 production and enhanced IL-10 secretion-associated impairment in mitogen-activated protein kinase activation. Interestingly, we observed a decrease of TLR4/MD-2 expression on the CD8α+ DC subset that persisted following LPS stimulation. The altered TLR4 expression on LPS-stimulated CD8α+ DCs was associated with reduced capacity to produce IL-12 after stimulation. Our results suggested that TLR4 reactivity on DCs, especially CD8α+ DCs, is disturbed after burn injury.  相似文献   

4.
5.
目的观察成年大鼠脊髓损伤后内源性神经前体细胞的增殖与分化,探讨内源性神经前体细胞的自然变化规律。方法制作脊髓压迫损伤模型,Brdu腹腔注射标记神经前体细胞,免疫荧光法(Immunofluoreseence)检测大鼠脊髓Brdu、GFAP、MBP阳性细胞数的变化。结果 1)正常组可观察到少量Brdu阳性细胞,脊髓损伤后Brdu阳性细胞显著增加(p0.05),并在第7天达到最大值,21天时仍高水平表达。2)正常组可见少量Brdu/GFAP和Brdu/MBP阳性细胞,脊髓损伤后Brdu/GFAP,Brdu/MBP双标阳性细胞数显著增加(p0.05)。结论脊髓损伤后神经前体细胞的数量在第7天达到最大值,我们认为,一周内可能是神经前体细胞增殖分化调控的关键时期。此外,新生星形胶质细胞和少突胶质细胞大量增殖,并与神经前体细胞的迁移、后肢功能恢复表现出一定的同步性,提示新生胶质细胞可能参与了脊髓损伤后神经功能的修复作用。  相似文献   

6.
The neuropeptide galanin is widely, but not ubiquitously, expressed in the adult nervous system. Its expression is markedly upregulated in many neuronal tissues after nerve injury or disease. Over the last 10 years we have demonstrated that the peptide plays a developmental survival role to subsets of neurons in the peripheral and central nervous systems with resulting phenotypic changes in neuropathic pain and cognition. Galanin also appears to play a trophic role to adult sensory neurons following injury, via activation of GalR2, by stimulating neurite outgrowth. Furthermore, galanin also plays a neuroprotective role to the hippocampus following excitotoxic injury, again mediated by activation of GalR2. In summary, these studies demonstrate that a GalR2 agonist might have clinical utility in a variety of human diseases that affect the nervous system.  相似文献   

7.
Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.  相似文献   

8.
Alzheimer’s disease (AD) is by far the most commonly diagnosed dementia, and despite multiple efforts, there are still no effective drugs available for its treatment. One strategy that deserves to be pursued is to alter the expression and/or physiological action of endogenous proteins instead of administering exogenous factors. In this study, we intend to characterize the roles of the antioxidant, anti-inflammatory, and heavy-metal binding proteins, metallothionein-1?+?2 (MT1?+?2), in a mouse model of Alzheimer’s disease, Tg2576 mice. Contrary to expectations, MT1?+?2-deficiency rescued partially the human amyloid precursor protein-induced changes in mortality and body weight in a gender-dependent manner. On the other hand, amyloid plaque burden was decreased in the cortex and hippocampus in both sexes, while the amyloid cascade, neuroinflammation, and behavior were affected in the absence of MT1?+?2 in a complex manner. These results highlight that the control of the endogenous production and/or action of MT1?+?2 could represent a powerful therapeutic target in AD.  相似文献   

9.
Neuronal migration is one of the most critical processes during early brain development. The gaseous messenger nitric oxide (NO) has been shown to modulate neuronal and glial migration in various experimental models. Here, we analyze a potential role for NO signaling in the migration of fetal human neural progenitor cells. Cells migrate out of cultured neurospheres and differentiate into both neuronal and glial cells. The neurosphere cultures express neuronal nitric oxide synthase and soluble guanylyl cyclase that produces cGMP upon activation with NO. By employing small bioactive enzyme activators and inhibitors in both gain and loss of function experiments, we show NO/cGMP signaling as a positive regulator of migration in neurosphere cultures of early developing human brain cells. Since NO signaling regulates cell movements from developing insects to mammalian nervous systems, this transduction pathway may have evolutionary conserved functions.  相似文献   

10.
R Gambari  F Amelotti  R Piva 《Experientia》1985,41(5):673-675
Long-term cultures of K562(S) cells in 50-75 microM hemin allow the selection of 'hemin-resistant' K562 cells together with cells which proliferate efficiently while fully induced to express the human embryonic globin genes, as the hemoglobin Gower 1 (zeta 2 epsilon 2) is the predominant hemoglobin produced. Our experiments demonstrate that these K562 cells accumulate mostly epsilon-globin mRNA (epsilon-globin mRNA/gamma-globin mRNA = 2.9) suggesting that the control of hemoglobin expression is at a pretranslational level.  相似文献   

11.
Olfactory ensheathing cells have been used in several studies to promote repair in the injured spinal cord. However, cellular interaction between olfactory ensheathing cells and glial cells induced to be reactive in the aftermath of injury site has not been investigated. Using an in vitro model of astrogliosis, we show that reactive astrocytes expressed significantly less glial fibrillary acidic protein (GFAP) when cultured both in direct contact with olfactory ensheathing cells and when the two cell types were separated by a porous membrane. Immunofluorescence staining also suggested that reactive astrocytes showed decreased chondroitin sulfate proteoglycans in the presence of olfactory ensheathing cells, although the reduction was not statistically significant. No down-regulation of GFAP was observed when reactive astrocytes were similarly cultured with Schwann cells. Cell viability assay and bromodeoxyuridine uptake showed that proliferation of reactive astrocytes was significantly increased in the presence of olfactory ensheathing cells and Schwann cells. Received 27 February 2007; received after revision 30 March 2007; accepted 3 April 2007  相似文献   

12.
Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron–glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.  相似文献   

13.
14.
Tumor differentiation factor (TDF) is an under-investigated protein produced by the pituitary with no definitive function. TDF is secreted into the bloodstream and targets the breast and prostate, suggesting that it has an endocrine function. Initially, TDF was indirectly discovered based on the differentiation effect of alkaline pituitary extracts of the mammosomatotropic tumor MtTWlO on MTW9/PI rat mammary tumor cells. Years later, the cDNA clone responsible for this differentiation activity was isolated from a human pituitary cDNA library using expression cloning. The cDNA encoded a 108-amino-acid polypeptide that had differentiation activity on MCF7 breast cancer cells and on DU145 prostate cancer cells in vitro and in vivo. Recently, our group focused on identification of the TDF receptor (TDF-R). As potential TDF-R candidates, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. Here we review the current advances on TDF, with particular focus on the structural investigation of its receptor and on its functional effects on breast and prostate cells.  相似文献   

15.
16.
Inhibition of protein deacetylation arrests cells in mitosis, but the mechanism is unknown. To understand why inhibiting protein deacetylation causes cell cycle arrest, we treated HeLa cells beyond G1/S transition with trichostatin A (TSA), a potent protein deacetylase inhibitor, and found that the cells arrested at prometaphase with ectopic spindles and unaligned chromosomes. The hyper-acetylated cells encountered a serious microtubule (MT)-kinetochore attachment problem, although the kinetochores are intact at ultrastructural level. By immunofluorescence staining of kinetochore proteins, we found that the pericentromeric H3K9Me3-HP1 pathway was disrupted and that the CENP-A-dependent outer plate protein dynamics of kinetochores was greatly diminished by the drug treatment. The treatment also caused the loss of chromosome passenger complex (CPC), the proposed error checking system, from centromere and impaired the microtubule dynamics of the cells. Overall, we propose that deacetylation inhibition impairs MT-kinetochore attachment through disrupting the centromere function and altering the kinetochore composition and MT dynamics. Received 30 April 2008; received after revision 28 July 2008; accepted 14 August 2008  相似文献   

17.
Olfactory ensheathing cells (OECs) represent an exciting possibility for promoting axonal regeneration within the injured spinal cord. A number of studies have indicated the ability of these cells to promote significant reactive sprouting of injured axons within the injured spinal cord, and in some cases restoration of functional abilities. However, the cellular and/or molecular mechanisms OECs use to achieve this are unclear. To investigate such mechanisms, we report for the first time the ability of OECs to promote post-injury neurite sprouting in an in vitro model of axonal injury. Using this model, we were able to differentiate between the direct and indirect mechanisms underlying the ability of OECs to promote neuronal recovery from injury. We noted that OECs appeared to act as a physical substrate for the growth of post-injury neurite sprouts. We also found that while post-injury sprouting was promoted most when OECs were allowed to directly contact injured neurons, physical separation using tissue culture inserts (1 mm pore size, permeable to diffusible factors but not cells) did not completely block the promoting properties of OECs, suggesting that they also secrete soluble factors which aid post-injury neurite sprouting. Furthermore, this in vitro model allowed direct observation of the cellular interactions between OECs and sprouting neurites using live-cell-imaging techniques. In summary, we found that OECs separately promote neurite sprouting by providing a physical substrate for growth and through the expression of soluble factors. Our findings provide new insight into the ability of OECs to promote axonal regeneration, and also indicate potential targets for manipulation of these cells to enhance their restorative ability.Received 19 January 2004; received after revision 8 March 2004: accepted 17 March 2004  相似文献   

18.
19.
Ethanol and opioid receptor signalling   总被引:1,自引:0,他引:1  
M E Charness 《Experientia》1989,45(5):418-428
Ethanol may modulate endogenous opioid systems by disrupting opioid receptor signalling. Low concentrations of ethanol slightly potentiate mu-opioid receptor binding by increasing receptor Bmax, and, in some cases, chronic ethanol exposure decreases the density or affinity of the mu-opioid receptors. By contrast, high concentrations of ethanol acutely decrease delta-opioid receptor binding by decreasing receptor affinity, whereas chronic exposure of animals and neuronal cell lines to lower concentrations of ethanol leads to possibly adaptive increases in the density or affinity of the delta-opioid receptors. In the neuronal cell line NG108-15, ethanol does not up-regulate the delta-opioid receptor by blocking receptor degradation or endocytosis, but protein synthesis is required for this response. Up-regulation of the delta-opioid receptor renders ethanol-treated NG108-15 cells 3.5-fold more sensitive to opioid inhibition of adenylyl cyclase. Long-term treatment with ethanol also increases maximal opioid inhibition in NG108-15 cells, possibly by decreasing levels of G alpha s and its mRNA. Ethanol differentially modulates signal transduction proteins in three additional neuronal cell lines, N18TG2, N4TG1, and N1E-115. Ethanol-treated N18TG2 cells show the least up-regulation of the delta-opioid receptor, little heterologous desensitization of adenylyl cyclase, and no changes in G alpha s or G alpha i. By contrast, ethanol-treated N1E-115 cells show the largest up-regulation of the delta-opioid receptor, the most heterologous desensitization of adenylyl cyclase, and concentration-dependent decreases in G alpha s and increases in G alpha i. Further analysis of these related neuronal cell lines may help to identify the molecular elements that endow some, but not all, neuronal cells with the capacity to adapt to ethanol.  相似文献   

20.
Cisplatin is a widely used chemotherapeutic agent that causes significant hearing loss. Previous studies have shown that cisplatin exposure is associated with increase in reactive oxygen species (ROS) in the cochlea. The inner ear expresses a unique isoform of NADPH oxidase, NOX3. This enzyme may be the primary source of ROS generation in the cochlea. The knockdown of NOX3 by pretreatment with siRNA prevented cisplatin ototoxicity, as demonstrated by preservation of hearing thresholds and inner ear sensory cells. Trans-tympanic NOX3 siRNA reduced the expression of NOX3 and biomarkers of cochlear damage, including transient receptor vanilloid 1 (TRPV1) channel and kidney injury molecule-1 (KIM-1) in cochlear tissues. In addition, siRNA against NOX3 reduced apoptosis as demonstrated by TUNEL staining, and prevented the increased expression of Bax and abrogated the decrease in Bcl2 expression following cisplatin administration. Trans-tympanic administration of siRNA directed against NOX3 may provide a useful method of attenuating cisplatin ototoxicity. In this paper, we review recent publications dealing with the role of NOX3 in ototoxicity and the effects of siRNA against cisplatin-induced hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号