首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurocan: a brain chondroitin sulfate proteoglycan   总被引:6,自引:0,他引:6  
Neurocan is a chondroitin sulfate proteoglycan of the lectican family and a component of the extracellular matrix of the central nervous system. It is mainly expressed during modeling and remodeling stages of this tissue. Neurocan can bind to various structural extracellular matrix components, such as hyaluronan, heparin, tenascin-C and tenascin-R, and the growth and mobility factors FGF-2, HB-GAM, and amphoterin. Neurocan can also interact with several cell surface molecules, such as N-CAM, L1/Ng-CAM, TAG-1/axonin-1, and an N-cadherin-binding N-acetyl-galactosamine-phosphoryl-transferase, and in vitro studies have shown that neurocan is able to modulate the cell-binding and neurite outgrowth promoting activites of these molecules. Current analysis of the molecular structures and substructures involved in homophilic and heterophilic interactions of these molecules and complementary loss-of-function mutations might shed some light on the roles played by neurocan and interacting molecules in the fine tuning of the nervous system.  相似文献   

2.
Lecticans: organizers of the brain extracellular matrix   总被引:19,自引:0,他引:19  
Lecticans are a family of chondroitin sulfate proteoglycans, encompassing aggrecan, versican, neurocan and brevican. These proteoglycans are characterized by the presence of ahyaluronan-binding domain and a C-type lectin domain in their core proteins. Through these domains, lecticans interact with carbohydrate and protein ligands in the extracellular matrix and act as linkers of these extracellular matrix molecules. In adult brain, lecticans are thought to interact with hyaluronan and tenascin-R to form a ternary complex. We propose that the hyaluronan-lectican-tenascin-R complex constitutes the core assembly of the adult brain extracellular matrix, which is found mainly in pericellular spaces of neurons as ‘perineuronal nets’. Received 27 September 1999; accepted 26 October 1999  相似文献   

3.
Extracellular matrix and neuronal movement   总被引:1,自引:0,他引:1  
Summary During brain development, both neuronal migration and axon guidance are influenced by extracellular matrix molecules present in the environment of the migrating neuronal cell bodies and nerve fibers. Glial laminin is an extracellular matrix protein which these early brain cells preferentially attach to. Extracellular glycosaminoglycans are suggested to function in restricting neuronal cell bodies and axons from certain brain areas. Since laminin is deposited along the radial glial fibers and along the developing nerve pathways in punctate form, the punctate assemblies may be one of the key factors in routing the developing neurons in vivo. This review discusses the role of laminin in neuronal movement given the present concept of the extracellular matrix molecules and their proposed interactions.  相似文献   

4.
Matrix metalloproteinase 19 (MMP-19) is able to process various proteins of the basement membrane. To investigate the impact of MMP-19 activity on endothelial cells in the context of tumor extracellular matrix (ECM), we treated Matrigel matrix with an active recombinant MMP-19 and analyzed its effect on capillary-like formation. Human microvascular endothelial cells (HMEC-1) could not form capillary-like formation on Matrigel treated with recombinant MMP-19. Analyzing the Matrigel proteins, we found that MMP-19 preferentially cleaved nidogen-1. The cleavage site of nidogen-1 was mapped to Thr867-Leu868. This cleavage separates the G3 globular domain containing the binding site for the 1 chain of laminin-1 and collagen IV and thus abolishes the capacity of nidogen-1 to cross-link ECM proteins. Anti-nidogen antibodies directed against the G3 domain of nidogen-1 inhibited the capillary-like structure formation to a similar extent as MMP-19. Since nidogen-1 is thought to stabilize microvessels, MMP-19 might be one of the enzymes that interferes with stabilization or maturation of nascent vasculature.Received 10 March 2004; received after revision 30 April 2004; accepted 26 May 2004  相似文献   

5.
Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology.  相似文献   

6.
The primary function of articular cartilage to act as a self-renewing, low frictional material that can distribute load efficiently at joints is critically dependent upon the composition and organisation of the extracellular matrix. Aggrecan is a major component of the extracellular matrix, forming high molecular weight aggregates necessary for the hydration of cartilage and to meet its weight-bearing mechanical demands. Aggregate assembly is a highly ordered process requiring the formation of a ternary complex between aggrecan, link protein and hyaluronan. There is extensive age-associated heterogeneity in the structure and molecular stoichiometry of these components in adult human articular cartilage, resulting in diverse populations of complexes with a range of stabilities that have implications for cartilage mechanobiology and integrity. Recent findings have demonstrated that aggrecan can form ligands with other matrix proteins. These findings provide new insights into mechanisms for aggregate assembly and functional protein networks in different cartilage compartments with maturation and aging.  相似文献   

7.
Extracellular matrix and neuronal movement   总被引:3,自引:0,他引:3  
P Liesi 《Experientia》1990,46(9):900-907
During brain development, both neuronal migration and axon guidance are influenced by extracellular matrix molecules present in the environment of the migrating neuronal cell bodies and nerve fibers. Glial laminin is an extracellular matrix protein which these early brain cells preferentially attach to. Extracellular glycosaminoglycans are suggested to function in restricting neuronal cell bodies and axons from certain brain areas. Since laminin is deposited along the radial glial fibers and along the developing nerve pathways in punctate form, the punctate assemblies may be one of the key factors in routing the developing neurons in vivo. This review discusses the role of laminin in neuronal movement given the present concept of the extracellular matrix molecules and their proposed interactions.  相似文献   

8.
Inflammation of the nasal (rhinitis) and sinus mucosa (sinusitis) are prevalent medical conditions of the upper airways that are concurrent in many patients; hence the terminology “rhinosinusitis”. The disease status is further defined to be “chronic” in case symptoms persist for more than 12 weeks without resolution. A diverse spectrum of external factors including viral and bacterial insults together with epithelial barrier malfunctions could be implicated in the chronicity of the inflammatory responses in chronic rhinosinusitis (CRS). However, despite massive research efforts in an attempt to unveil the pathophysiology, the exact reason for a lack of resolution still remains poorly understood. A novel set of molecules that could be implicated in sustaining the inflammatory reaction may be found within the host itself. Indeed, besides mediators of inflammation originating from outside, some endogenous intracellular and/or extracellular matrix (ECM) components from the host can be released into the extracellular space upon damage induced during the initial inflammatory reaction where they gain functions distinct from those during normal physiology. These “host-self” molecules are known to modulate inflammatory responses under pathological conditions, potentially preventing resolution and contributing to the development of chronic inflammation. These molecules are collectively classified as damage-associated molecular patterns (DAMPs). This review summarizes the current knowledge regarding DAMPs in upper airway pathologies, also covering those that were previously investigated for their intracellular and/or ECM functions often acting as an antimicrobial agent or implicated in tissue/cell homeostasis, and for which their function as a danger signaling molecule was not assessed. It is, however, of importance to assess these molecules again from a point of view as a DAMP in order to further unravel the pathogenesis of CRS.  相似文献   

9.
The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in, different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.  相似文献   

10.
The tenascins are a family of large multimeric extracellular matrix proteins consisting of repeated structural modules including heptad repeats, epidermal growth factor (EGF)-like repeats, fibronectin type III repeats, and a globular domain shared with the fibrinogens. The tenascins are believed to be involved in the morphogenesis of many organs and tissues. To date three members of the tenascin family have been described, tenascin-C, tenascin-R, and tenascin-X. Tenascin-R seems to be specific for the central and peripheral nervous system, tenascin-X is most prominent in skeletal and heart muscle, while tenascin-C is present in a large number of developing tissues including the nervous system, but is absent in skeletal and heart muscles. Tenascin-C was the original tenascin discovered, partly because of its overexpression in tumors. Inferring from cell biological studies, it has been proposed that tenascin-C is an adhesion-modulating protein.  相似文献   

11.
Proteins of the developing enamel matrix include amelogenin, ameloblastin and enamelin. Of these three proteins amelogenin predominates. Protein-protein interactions are likely to occur at the ameloblast Tomes’ processes between membrane-bound proteins and secreted enamel matrix proteins. Such protein-protein interactions could be associated with cell signaling or endocytosis. CD63 and Lamp1 are ubiquitously expressed, are lysosomal integral membrane proteins, and localize to the plasma membrane. CD63 and Lamp1 interact with amelogenin in vitro. In this study our objective was to study the molecular events of intercellular trafficking of an exogenous source of amelogenin, and related this movement to the spatiotemporal expression of CD63 and Lamp1 using various cell lineages. Exogenously added amelogenin moves rapidly into the cell into established Lamp1-positive vesicles that subsequently localize to the perinuclear region. These data indicate a possible mechanism by which amelogenin, or degraded amelogenin peptides, are removed from the extracellular matrix during enamel formation and maturation. Received 27 September 2006; received after revision 24 November 2006; accepted 5 December 2006  相似文献   

12.
Hyaluronan   总被引:1,自引:0,他引:1  
The polysaccharide hyaluronan is an essential component of the vertebrate extracellular matrix and also produced by viruses, bacteria and fungi. Although the hyaluronan polymer is simply a disaccharide that repeats many thousands of times, it has an amazing array of biological functions and medical uses. For example, it is an efficient space filler that maintains hydration, serves as a substrate for assembly of proteoglycans and cellular locomotion, regulates cellular function and development, and is involved in tumor progression, inflammation and wound healing. Its physical properties and biocompatibility also make it of considerable importance in the development of engineered tissue, biomaterials and in clinical applications. Received 23 January 2007; received after revision 25 February 2007; accepted 22 March 2007  相似文献   

13.
Cell-matrix contact structures   总被引:4,自引:0,他引:4  
Cell-extracellular matrix contacts are points on cell surfaces where adhesion receptors tether cells to matrix and are linked intracellularly to cytoskeletal components. These structures integrate cell organisation within tissues, support cell motility and specialised activities of differentiated cells, and transduce extracellular signals. Current characterisations of matrix contacts are based on morphological and biochemical criteria, yet the levels of definition of different contact types are very varied. Some contacts are surprisingly little-studied given their likely importance in vivo. Here, I describe the general features of matrix contacts, review the functions and molecular composition of major types of transient and stable matrix contacts, and discuss the information that is emerging on contact integration and dynamics in single cells. Received 7 September 2000; received after revision 4 October 2000; accepted 6 October 2000  相似文献   

14.
New blood vessel formation, a process referred to as angiogenesis, is essential for embryonic development and for many physiological and pathological processes during postnatal life, including cancer progression. Endothelial cell adhesion molecules of the integrin family have emerged as critical mediators and regulators of angiogenesis and vascular homeostasis. Integrins provide the physical interaction with the extracellular matrix necessary for cell adhesion, migration and positioning, and induction of signaling events essential for cell survival, proliferation and differentiation. Antagonists of integrin alpha V beta 3 suppress angiogenesis in many experimental models and are currently tested in clinical trials for their therapeutic efficacy against angiogenesis-dependent diseases, including cancer. Furthermore, interfering with signaling pathways downstream of integrins results in suppression of angiogenesis and may have relevant therapeutic implications. In this article we review the role of integrins in endothelial cell function and angiogenesis. In the light of recent advances in the field, we will discuss their relevance as a therapeutic target to suppress tumor angiogenesis.  相似文献   

15.
Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation   总被引:2,自引:0,他引:2  
Electrical, contractile and structural remodeling have been characterized in atrial fibrillation (AF), and the latter is considered to be the major contributor to AF persistence. Recent data show that interstitial fibrosis can predispose to atrial conduction impairment and AF induction. The interplay between cardiac matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of MMPs (TIMPs), is thought to be critical in atrial extracellular matrix (ECM) metabolism. At the molecular level, angiotensin II, transforming growth factor-beta1, inflammation and oxidative stress are particularly important for ECM dysregulation and atrial fibrotic remodeling in AF. Therefore, we review recent advances in the understanding of the atrial fibrotic process, the major downstream components in this remodeling process, and the expression and regulation of MMPs and TIMPs. We also describe the activation of bioactive molecules in both clinical studies and animal models to modulate MMPs and TIMPs and their effects on atrial fibrosis in AF.  相似文献   

16.
In this review, we detail the current understanding of the extracellular matrix (ECM) of the migratory slug phase of the cellular slime mould,Dictyostelium discoideum. We describe some structural and non-structural molecules which comprise the ECM, and how these molecules reflect both plant and animal ECM systems. We also describe zones of the multicellular slug that are known to make ECM components, including the role of the prestalk cells and the slug epithelium-like layer. Finally, we review the contributions of studies on mutant to our understanding of the ECM ofD. discoideum, and relate this to differentiation and development in more complex eukaryotic systems.  相似文献   

17.
When temperatures plummet below 0 °C, wood frogs (Rana sylvatica) can endure the freezing of up to?~?65% of their body water in extracellular ice masses, displaying no measurable brain activity, no breathing, no movement, and a flat-lined heart. To aid survival, frogs retreat into a state of suspended animation characterized by global suppression of metabolic functions and reprioritization of energy usage to essential survival processes that is elicited, in part, by the regulatory controls of microRNAs. The present study is the first to investigate miRNA biogenesis and regulation in the brain of a freeze tolerant vertebrate. Indeed, proper brain function and adaptations to environmental stimuli play a crucial role in coordinating stress responses. Immunoblotting of miRNA biogenesis factors illustrated an overall reduction in the majority of these processing proteins suggesting a potential suppression of miRNA maturation over the freeze–thaw cycle. This was coupled with a large-scale RT-qPCR analysis of relative expression levels of 113 microRNA species in the brains of control, 24 h frozen, and 8 h thawed R. sylvatica. Of the 41 microRNAs differentially regulated during freezing and thawing, only two were significantly upregulated. Bioinformatic target enrichment of the downregulated miRNAs, performed at the low temperatures experienced during freezing and thawing, predicted their involvement in the potential activation of various neuroprotective processes such as synaptic signaling, intracellular signal transduction, and anoxia/ischemia injury protection. The predominantly downregulated microRNA fingerprint identified herein suggests a microRNA-mediated cryoprotective mechanism responsible for maintaining neuronal functions and facilitating successful whole brain freezing and thawing.  相似文献   

18.
The lymphatic vasculature is essential for fluid homeostasis and transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a hierarchical network of blind-ended lymphatic capillaries and collecting lymphatic vessels, both lined by lymphatic endothelial cells (LECs). The low hydrostatic pressure in lymphatic capillaries, their loose intercellular junctions, and attachment to the surrounding extracellular matrix (ECM) permit passage of extravasated blood plasma from the interstitium into the lumen of the lymphatic capillaries. It is generally thought that interstitial fluid accumulation leads to a swelling of the ECM, to which the LECs of lymphatic capillaries adhere, for example via anchoring filaments. As a result, LECs are pulled away from the vascular lumen, the junctions open, and fluid enters the lymphatic vasculature. The collecting lymphatic vessels then gather the plasma fluid from the capillaries and carry it through the lymph nodes to the blood circulation. The collecting vessels contain intraluminal bicuspid valves that prevent fluid backflow, and are embraced by smooth muscle cells that contribute to fluid transport. Although the lymphatic vessels are regular subject to mechanical strain, our knowledge of its influence on lymphatic development and pathologies is scarce. Here, we discuss the mechanical forces and molecular mechanisms regulating lymphatic vascular growth and maturation in the developing mouse embryo. We also consider how the lymphatic vasculature might be affected by similar mechanomechanisms in two pathological processes, namely cancer cell dissemination and secondary lymphedema.  相似文献   

19.
Several serine proteases including thrombin, tissue-type plasminogen activator and urokinase-type plasminogen activator have been well characterized in the brain. In this article, we review the brain-related trypsin and trypsin-like serine proteases. Accumulating evidence demonstrates that trypsin and trypsin-like serine proteases play very important roles in neural development, plasticity, neurodegeneration and neuroregeneration in the brain. Neuropsin is able to hydrolyze the extracellular matrix components by its active site serine, and regulates learning and memory in normal brain. The mutant neurotrypsin contributes to mental retardation in children. Neurosin seems to be involved in the pathogenesis of neurodegenerative disorders, like Alzheimer’s disease, Parkinson’s disease or multiple sclerosis. Although mesotrypsin/trypsin IV is also implicated in neurodegeneration, its functional significance still remains largely unknown. Particularly, mesotrypsin/trypsin IV, P22 and neurosin exert their physiological and pathological functions through activation of certain protease-activated receptors (PARs). In the brain, the presence of serpins controls the activity of serine proteases. Therefore, understanding the interaction among brain trypsin, serpins and PARs will provide invaluable tools for regulating normal brain functions and for the clinical treatment of neural disorders. Y. Wang, W. Luo: These authors made equal contributions. Received 26 June 2007; received after revision 13 August 2007; accepted 12 September 2007  相似文献   

20.
Adipose tissue is an endocrine organ capable of secreting a number of adipokines with a role in the regulation of adipose tissue and whole-body metabolism. We used two-dimensional gel electrophoresis combined with mass spectrometry to profile the secreted proteins from (pre)adipocytes. The culture medium of 3T3-L1 cells during adipocyte differentiation was screened, and 41 proteins that responded to blocking of secretion by 20°C treatment and/or brefeldin A treatment were identified. Prohibitin, stress-70 protein, and adhesion-regulating molecule 1 are reported for the first time as secreted proteins. In addition, procollagen C-proteinase enhancer protein, galectin-1, cyclophilin A and C, and SF20/IL-25 are newly identified as adipocyte secreted factors. Secretion profiles indicated a dynamic environment including an actively remodeling extracellular matrix and several factors involved in growth regulation.Received 15 June 2004; received after revision 26 July 2004; accepted 2 August 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号