共查询到20条相似文献,搜索用时 13 毫秒
1.
HHT时频分析被广泛应用于机械故障诊断中,但其模态混叠成为应用时的瓶颈。针对此问题提出了利用二次集合经验模态分解分解(ensemble empirical mode decomposition,EEMD)来消除模态混叠的时频分析方法。该方法首先用EEMD将原信号分解成若干个本征模函数(intrinsic mode function,IMF),然后选取相关系数较大的分量重构原信号,再利用EEMD对其进行二次处理,便可获得去除模态混叠的时频分布。通过对仿真与实验转子信号分析,该方法可以有效抑制经验模式分解(empirical mode decomposition,EMD)的模态混叠现象,相比一次EEMD,二次EEMD去除模态混叠更明显,能有效应用于旋转机械故障诊断中。 相似文献
2.
爆破监测信号多为含噪信号,噪声会使经验模态分解(EMD)的结果产生严重的模态混淆,使用改进算法EEMD对模态混淆有一定的抑制作用但效果并不明显。为此本研究将使用自适应补充集合经验模态分解(CEEMDAN)来处理含噪信号。比较EMD、EEMD、CEEMDAN对仿真信号的分解结果,计算EMD、EEMD、CEEMDAN得到的IMF的排列熵值,对EMD、EEMD、CEEMDAN的分解结果进行Hilbert变换,并比较三者时频谱的分辨率。最后将CEEMDAN用于水下钻孔爆破地震波时频分析中,结果表明:CEEMDAN不仅对模态混淆具有一定的抑制作用,且其分解结果经过Hilbert变换得到的时频谱在时域和频域上都具有较高的分辨率。 相似文献
3.
经验模态分解法(EMD)的端点效应是影响该方法精度的难点问题,结合端点效应的产生原理和现有研究成果,采用镜像闭合延拓法和灰色神经网络预测法相结合的方法对信号两端的包络进行延拓;通过对仿真信号和实际信号的分析表明,该方法可以有效抑制EMD方法的端点效应.利用改进的EMD方法对提速干线铁路和客运专线铁路实测轨道不平顺信号进行研究,结果表明:京广提速干线铁路样本段轨道不平顺存在着不同程度的短波和中长波不平顺,而武广高速铁路样本段轨道不平顺主要分布于中长波区段.改进EMD方法为保障铁路安全运营提供了一种新的途径. 相似文献
4.
为了优化高频率分辨率的希尔伯特时频谱的表达效果,提出一种基于卷积运算思想的希尔伯特时频谱平稳化和自适应增强方法.首先,由希尔伯特黄变换得到高频率分辨率的时频谱和边际谱,通过设定时域和频域平稳因子及权重得到相应的核矩阵,并依照卷积运算的过程对时频谱进行平稳化;然后,将平稳化之后的边际谱值作为时频谱中相应瞬时频率处谱线的增... 相似文献
5.
基于Hilbert-Huang变换的第一心音信号时频分析 总被引:4,自引:0,他引:4
根据瓣膜原理,第一心音(S1)是在心脏收缩期由二尖瓣和三尖瓣关闭时引起的振动产生的,含有多个频率分量.对第一心音信号的分析研究,在临床上对心脏疾病的诊断有重要意义.本文用一种全新的时频分析方法:Hilbert-Huang变换(HHT),对30例心音数据进行心音分析实验.实验结果表明:HHT方法可以有效的分析心音信号;S1含有二尖瓣M1及三尖瓣T1两个主要成份;异常S1的M1和T1的频率比正常S1有升高. 相似文献
6.
阵列声波测井信号是典型的非线性、非平稳信号。文中采用EMD(经验模态分解)的时频分析方法,对油层声波信息提取储集层性质。首先对信号进行EMD分解,得到有限个固有模态函数(IMF),再次对每个IMF做H ilbert变换,求得信号的H ilbert谱的三维分布以及H ilbert边际谱和瞬时能量谱,仿真结果表明,油层中纵... 相似文献
7.
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)是一种新的时频分析方法,该方法需要事先确定较为准确的初始值,缺乏自适应性.针对ASTFA存在的问题,提出了基于初值优化的ASTFA方法.该方法使用残余量的能量作为优化目标函数,使用不同的初始值对信号进行分解,当残余量的能量最小时,则认为该初始值为最优初始值.因此,该方法能够自适应地寻找最优的初始值,增加了ASTFA方法的自适应性.采用仿真信号将该方法与原ASTFA方法进行对比,结果表明该方法能自适应地得到更准确的分解结果.对仿真信号和滚动轴承故障数据进行分析,结果表明ASTFA在抑制端点效应和模态混淆、抗噪声性能、提高分量的准确性等方面要优于经验模态分解(empirical mode decomposition,EMD),并能有效应用于滚动轴承故障诊断. 相似文献
8.
基于熵测度和SQP方法的跳频信号时频表示 总被引:1,自引:0,他引:1
提出了一种基于三阶Renyi熵测度的双向高斯核函数,分析了核参数与熵测度的变化规律,并利用逐步二次规划法对其进行优化.与信号相关径向高斯核函数时频分布相比,该方法不需要任何先验假定,能够有效反映交叉项在时频分布中的大小,获取优化的时频表示,从而提高了跳频信号的参数估计精度,同时可以适应低信噪比环境.仿真结果验证了基于熵测度优化时频表示法分析跳频信号的有效性和实用性. 相似文献
9.
《华中科技大学学报(自然科学版)》2017,(5):11-16
为了提高强海洋背景噪声中对微弱的船舶轴频电场信号的检测性能,提出了一种基于集合经验模态分解(EEMD)和窄带功率谱能量峰值熵比(EPER)特征的检测算法.首先,利用EEMD方法从含噪信号中分解出一组有效固有模态函数(IMF),并对其功率谱进行子区间划分;其次,定义并计算了各子区间的一种改进功率谱熵特征——EPER;最后,通过分析轴频信号和环境噪声物理特征上的差异,结合K-均值聚类方法进行线谱子区间的提取,继而进行滑动检测.选用实测数据,与小波包熵滤波算法、小波阈值去噪算法、特征频段功率谱算法进行对比,处理结果表明所提算法具有更好的自适应性和检测性能. 相似文献
10.
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解.为了研究ASTFA的分解能力,在定义分解能力评价指标(Evaluation Index of Decomposition Capacity,EIDC)的基础上,以双谐波分量合成信号模型来研究幅值比、频率比、初始相位差对ASTFA的影响.同时,将ASTFA方法与经验模态分解(Empirical Mode Decomposition,EMD)、局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)进行对比分析.研究结果表明,ASTFA方法的分解能力基本不受幅值比的影响,可分解的极限频率比较大,不受初始相位差的影响,该方法的分解能力具有明显的优越性. 相似文献
11.
提出一种S方法结合熵测度优化进行跳频信号参数估计的新方法.该方法在获取信号优化时频分布的基础上,基于时频平面设计参数估计算法,可以在不需要任何先验知识的情况下,估计出跳频周期、跳变时刻和跳频频率等参数.另外,在高斯噪声环境下对分析结果进行了仿真.结果表明,该方法对跳频信号的参数估计优于其他时频分析方法,减小了参数估计的偏差和估计方差,而且优化过程的复杂性也有所降低. 相似文献
12.
13.
在定义一种瞬时频率具有物理意义的单分量信号一内禀尺度分量(简称ISC)的基础上,提出一种新的信号自适应时频分析方法-局部特征尺度分解方法(简称LCD).LCD方法可以自适应地将任意一个复杂信号分解为若干个瞬时频率具有物理意义的ISC分量之和.对LCD方法的基本理论进行研究,分别采用LCD方法和经验模态分解(简称EMD)方法对仿真信号进行分析,对比结果表明:LCD方法的有效性及在端点效应、计算时间等方面都优于EMD方法,并且把LCD方法应用于齿轮的实验振动信号分析,LCD方法可以有效地应用于齿轮故障诊断. 相似文献
14.
基于Hilbert谱熵的柴油机故障诊断方法研究 总被引:1,自引:0,他引:1
从信号的特征提取出发,采用局域波时频谱分析和信息熵结合的方法--Hilbert谱熵(HSE),进行柴油机振动信号的特征提取和状态识别.首先,对信号进行局域波分解;然后,根据得到的内蕴模式分量计算Hilbert谱;最后,建立基于时频分布的Hilbert谱熵,并以此作为故障识别的特征参数.以柴油机缸套与活塞间磨损的状态识别为例,根据对时域、频域和时频域的信息熵比较分析,证明了Hilbert谱熵对柴油机的状态进行评价的有效性.此方法为柴油机预知维修提供了一个有效的手段. 相似文献
15.
针对Wigner-Ville分布(WVD)在分析多分量信号时交叉干扰项与时频聚集性相互矛盾的问题,提出一种基于变分模态分解的伪魏格纳分布法(VMD-PWVD),以抑制WVD分布中的交叉项。该方法首先对信号进行VMD分解,将信号在频域上进行剖分,得到一组相互独立的具有不同频率的固有模态函数(IMF)分量,然后对每个IMF分量进行PWVD分析,最后把各个IMF分量的PWVD分析结果线性叠加,重构原始信号的时频分布。仿真结果表明,该方法在有效地从频域和时域双向抑制WVD交叉项的同时,又保留了WVD分布法原有的优良特性。将VMD-PWVD应用于内燃机缸盖振动信号的时频分析中,能很好地刻画出不同工况信号的特征信息,各时频分量物理意义明确,是一种有效的时频分析方法。 相似文献
16.
针对互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)后不易有效区分有用信号和噪声的问题,以及传统小波去噪阈值选取的不足,提出基于改进CEEMD的自适应小波熵阈值地震随机噪声压制算法。将地震信号进行CEEMD后,基于互信息熵和互相关系数获取高频含噪本征模态函数(intrinsic mode function,IMF);对含噪IMF进行多尺度小波分解,将高频小波系数等分为若干区间计算各区间小波熵,在此基础上得到不同尺度的自适应阈值,同时设计了改进阈值函数进行小波阈值去噪。仿真实验中,去噪残差和频谱分析表明,算法能在保留有用信号的同时有效去除随机噪声,实现保幅去噪。实际地震资料处理表明,相比其他去噪算法,算法能有效提高信噪比(signal-to-noise ratio,SNR) 1 d B以上,降低均方误差(root mean square error,RMSE),具有良好的去噪能力。 相似文献
17.
针对经验模态分解(empirical mode decomposition,EMD)中出现的端点效应和模态混叠现象问题,提出了利用最大相关波形延拓改进聚合经验模态分解(ensemble empirical mode decomposition,EEMD)方法.利用最大相关波形法对原始信号的两端进行延拓,实现延拓数据在原信号边界处的平滑过渡,减小端点处包络线的拟合误差.针对EEMD中参数无法自动获取的问题,采用自适应EEMD对新信号进行分解,提高信号的分解精度.通过仿真分析和转子不平衡故障诊断实例研究表明,改进的EEMD方法不仅能够明显减少虚假模态分量、有效抑制模态混叠现象,而且较好地改善了端点效应引起的分解失真问题.同时与基于极值点对称延拓改进方法及基于镜像延拓改进方法相比,所提方法具有较高的分解精度. 相似文献
18.
基于EEMD能量熵和支持向量机的齿轮故障诊断方法 总被引:5,自引:0,他引:5
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法.通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型.实验结果表明:文中提出的方法能有效地应用于齿轮的故障诊断. 相似文献
19.
根据钢轨表面缺陷的灰度和梯度特征,提出了钢轨缺陷自动检测方法:基于灰度-梯度共生矩阵为模型提取钢轨缺陷的内边缘,其中以最大熵方法自动求取灰度-梯度二维阈值向量,利用形态学方法对分割后的二值图像进行后期处理,有效区分正常轨面、缺陷区域、阴影和干扰区域.实验表明:本方法能较好地对钢轨表面缺陷进行检测. 相似文献