首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Integrated fission track and (U-Th)/He analysis is carried out on 6 apatite and 6 zircon samples from a near vertical section in The Tiantangzhai region at the core of the present Dabieshan orogen. The result shows that the region experienced cooling/exhumation during the Late Cretaceousand Early Tertiary period. Age-elevation relationships for different dating systems and different minerals suggest a pulse of rapid exhumation at ~110 Ma before present, preserved in the structurally highest samples. At lower elevations, ages begin to decrease with decreasing elevation, suggesting lower exhumation rates since 90 Ma. Two periods of different exhumation rates are identified since 90 Ma. The average apparent exhumation rate for the period of 43.4—22.5 is 0.062 km/Ma, whereas that for the period of 76.4—47.4 Ma is 0.039 km/Ma.  相似文献   

2.
The apatite(U-Th)/He thermochronometry has been used to study the tectono-thermal evolution of mountains and sedimentary basins for over ten years.The closure temperature of helium is important for the apatite(U-Th)/He thermochronometry and has been widely studied by thermal simulation experiments.In this paper,the apatite He closure temperature was studied by establishing the evolutionary pattern between apatite He ages and apatite burial depth based on examined apatite He ages of natural samples obtained from drillholes in the Tarim basin,China.The study showed that the apatite He closure temperature of natural samples in the Tarim basin is approximately 88±5℃,higher than the result(~75℃) obtained from the thermal simulation experiments.The high He closure temperature resulted from high effective uranium concentration,long-term radiation damage accumulation,and sufficient particle radii.This study is a reevaluation of the conventional apatite He closure temperature and has a great significance in studying the uplifting events in the late period of the basin-mountain tectonic evolution,of which the uplifting time and rates can be determined accurately.  相似文献   

3.
The poorly studied Douling Complex is a crystalline basement that developed in the Neoproterozoic-Paleozoic weakly metamorphosed to non-metamorphosed strata at the South Qinling tectonic belt. Five banded dioritic-granitic gneiss samples from the Douling Complex were chosen for LA-MC-ICPMS U-Pb zircon dating, which yielded protolith emplacement ages of 2469 ± 22 Ma, 2479 ± 12 Ma, 2497 ± 21 Ma, 2501 ± 17 Ma and 2509 ± 14 Ma, respectively. An important peak age of ~2.48 Ga was also obtained for a metasedimentary rock in the same region. These discoveries suggest the occurrence of magmatic activity of 2.51–2.47 Ga at the northern margin of the Yangtze craton. The age-corrected ? Hf(t) values obtained from in situ zircon Hf isotopic analysis are mainly between ?5.5 and +0.3, and the two-stage zircon Hf model ages range from 3.30 to 2.95 Ga. Considering two important periods of ~3.3–3.2 Ga and ~2.95–2.90 Ga for the continental crustal growth in the Yangtze craton, we infer that the dioritic-granitic gneisses from the Douling Complex are the products of reworking of Paleo- to Mesoarchean crust at the northern margin of the Yangtze craton at ~2.5 Ga. In addition, metamorphic ages of 837 ± 8 Ma and 818 ± 10 Ma were obtained for zircon overgrowth rims from a dioritic gneiss and a metasedimentary rock, indicating that the main phase amphibolite facies metamorphism of the Doulng Complex occurred during the Neoproterozoic, although its geological meaning remains ambiguous.  相似文献   

4.
Two-pyroxene granulite and clinopyroxene granulite xenoliths have been recently discovered in the Late Paleogene toNeogene volcanic rocks (with ages in the range of 4.27~44.60 Ma) that outcropped in Hoh Xil, central Tibetan plateau. Based on theelectron microprobe analysis data, the xenoliths provide constraints for the formation equilibrium temperatures of the two-pyroxene gran-ulite being about 783 to 818℃ as determined by two-pyroxene thermometry and the forming pressure of the clinopyroxene granulite beingabout 0.845 to 0.858 GPa that is equivalent to 27.9~28.3 km depth respectively. It indicates that these granulite xenoliths represent thesamples from the middle part of the thickened Tibetan crust. This discovery is important and significant to making further discussion onthe component and thermal regime of the deep crust of the Tibetan plateau.  相似文献   

5.
Fission track (FT) ages of apatite and zircon from four granite batholiths from Lhasa and Shannan areas are measured.The FT ages of apatite range from 3.2±8.3 Ma, corresponding to the uplift rates of 0.12±0.20 mm·a~(-1) during this period. The upliftheight is 580m, showing that there is not large-scale rapid uplifting in southern Tibet from 3.2 to 8.3 Ma. The zircon FT ages of Lhasabatholith are 25.9±1.7 and 32.7±2.8 Ma, yielding an uplift rate of 0.08 mm·a~(-1) between 26 and 33 Ma. Combining this work withother studies, it is suggested that the average uplift rate in southern Tibet is low from the time of collision between India and Asian conti-nents to ~3Ma. The uplift of Tibetan Plateau seems to have finished in multi-stage processes with varied rates.  相似文献   

6.
Apatite fission track dating is carried out on nine samples collected from the central part (Lianmuqin section) and from both northern and southern margins of Turpan-Hami Basin. The fission-track ages of seven Jurassic samples are distinctly younger than depositional ages. In contrast, the fission-track ages of two Cretaceous samples are older than, or as old as depositional ages. These observations indicate that the Jurassic samples have been annealed or partially annealed, whereas the Cretaceous samples have not been annealed.The further thermal modelling results show that Turpan-Hami Basin experienced a Late Cretaceous period (120-100 Ma) of tectonic uplift with rapid cooling and exhumation of sediments. The samples underwent a Cenozoic period of reburial and re-heating and were exhumed again at 10-8 Ma.  相似文献   

7.
Turpan HamiBasinisoneofthreekeyoil/gas bearingbasinsinXinjiang ,China .TheaeromagneticdatadisclosethatTurpan HamiBasinisofdoublebasements ,namelythePrecambriancrystalbasementandthePaleozoicfoldingbasementofvolcanicrockandclasticrock[1,2 ] .ThebasementevolutionstoppedattheendoftheCarboniferous .EarlyPermianwasaperiodofanimportanttectonictransitionintheTur pan HamiBasinthatunderwentatransformfromthebasementevolutiontothecoverevolutionstartingfromtheLatePermian[3] .Thebasinistotallyinlaidi…  相似文献   

8.
The Louzidian normal fault occurs as the eastern detachment fault of the Kalaqin metamorphic core complex. Field observations and microstructural analyses reveal that the Louzidian-Dachengzi ductile shear zone developed in its lower-plate was genetically related to sinistral strike-slips and extensional faulting. Two samples from this ductile shear zone yield 40Ar-39Ar plateau ages of 133 Ma (Bi) and 126 Ma (Kp), which are concordant with their isochron ages. The plateau age of 133 Ma (Bi) records the formation age of the ductile shear zone. The inconsistent relationship between the earlier strike-slip ductile shear zone and the later normal fault makes the Kalaqin Quasi-metamorphic core complex distinctive from Cordilleran metamorphic core complex. These ages provide important geochronological data for putting constraints on the formation age and genesis of such ductile shear zones.  相似文献   

9.
The Louzidian normal fault occurs as the eastern detachment fault of the Kalaqin metamorphic core complex. Field observations and microstructural analyses reveal that the Louzidian-Dachengzi ductile shear zone developed in its lower-plate was genetically related to sinistral strike-slips and extensional faulting. Two samples from this ductile shear zone yield 40Ar-39Ar plateau ages of 133 Ma (Bi) and 126 Ma (Kp), which are concordant with their isochron ages. The plateau age of 133 Ma (Bi) records the formation age of the ductile shear zone. The inconsistent relationship between the earlier strike-slip ductile shear zone and the later normal fault makes the Kalaqin Quasi-metamorphic core complex distinctive from Cordilleran metamorphic core complex. These ages provide important geochronological data for putting constraints on the formation age and genesis of such ductile shear zones.  相似文献   

10.
Five Late-Cenozoic olivine basalt samples, taken from 3 young volcanoes (Keluo, Lianhuashan and Qinglongshan) located in the north of Heilongjian Province, were dated by the conventional K-Ar dating method. The apparent ages of whole rock are (0. 06 ±0. 01) Ma, (0.15 ±0.03) Ma, (0.17 ±0.02) Ma, (21.10 ±0.13) Ma and (24.46 ±0.10) Ma, respectively. In the crushed sample grains (mush number 80–100) olivine (including phynocryst and xenocryst)was picked out under a binocular microscope, then apparent ages obtained are (0.03 ±0.01) Ma, (0.06 ±0.01) Ma, (0.07 ±0.03) Ma, (2.31 ±0.02) Ma and (1.50 ±0.21) Ma, respectively. The apparent ages of the o-livine-picked out sample are come down (younger) 50% to over 90%. There are a lot of the Late-Cenozoic volcanic olivine basalt outcropping in eastern China, probably the age-datings of those basalt samples in which olivine grains are unpicked out are older than the true geological ages. The inference and conclusion drawn from those datings should be renewed.  相似文献   

11.
The Wudangshan, Yaolinghe volcanic-sedimentary sequences and doleritic-gabbroic sills comprise the largest exposed Precambrian basement in South Qinling. Zircons separated from 5 volcanic-pyroclastic samples of the Wudangshan Group, 2 volcanic samples of the Yaolinghe Group and one sample for the mafic sills were used for U-Pb dating by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The results reveal that the Wudangshan volcanic sequence was formed at (755±3) Ma (a weighted mean from the 5 samples, MSWD=0.47), whereas the Yaolinghe volcanic suite and the mafic sill were crystallized at (685±5) (2 samples, MSWD=0.36) and (679±3) Ma (MSWD=1.6), respectively, which are equal to each other within analysis errors. These ages are markedly younger than those previously documented for the rocks. The newly obtained ages for the Wudangshan and Yaolinghe Groups are Identical to those of the bottom Liantuo and slightly older than those of the Nantuo Formations, respectively, lower strata of the Nanhua (middle to late Neoproterozoic) stratotype section in eastern Three Gorges, Yangtze creton. A range of inherited magmatic zircons was recognized with ages of 830 to 780 Ma, which are typical of Neoprotzrozoic magmatisms recorded along the margins and interior of the Yangtze craton. Thus, there is Neoproterozoic basement comprising 830-780 Ma igneous suites in South Qinling; the inherited zircons were detrital sediments derived from the northern margin of the Yangtze craton. Accordingly, it is suggested that the South Qinling is a segment of the Yangtze creton before the Qinling Orogeny.  相似文献   

12.
东秦岭—大别地区中生代岩石圈拆沉的岩石学证据评述   总被引:7,自引:0,他引:7  
岩石圈拆沉是碰撞造山带物质成分调整和构造演化的重要方式之一。构造地质研究、地球物理探测和地球化学分析等都已揭示东秦岭-大别造山带曾在中生代发生岩石圈拆沉,但有关中生代变质作用和岩浆活动与岩石圈拆沉的内在联系研究却较为薄弱。通过全面评述该区变质岩研究成果,作者认为:超高压变质岩的形成和剥露经历了240~200Ma的板片冷俯冲冷折返和196~163Ma的岩石圈拆沉热折返;热折返伴随了广泛而强烈的区域变质作用和中酸性岩浆活动,指示板片断离拆沉的发生;超高压变质岩p-T-t轨迹由两部分组成,即反映板片冷俯冲冷折返过程的发夹状曲线和指示板片断离拆沉热折返过程的新月形曲线。通过对花岗岩类同位素年龄统计和前人研究成果的评述,初步确定在200~100Ma之间发育大量花岗岩类,并集中在150~100Ma为主(即侏罗纪—白垩纪之交),高峰时间为130Ma左右;花岗岩类大量发育指示了岩石圈拆沉的存在,且滞后于根据变质岩研究所揭示的拆沉时间。羌塘地体、拉萨地体和西太平洋古陆在侏罗纪与欧亚大陆拼贴碰撞的远距离效应使东秦岭—大别造山带长期处于挤压环境,伸展作用被抑制;白垩纪的碰撞晚期伸展和西太平洋沟弧盆体系的远距离效应使东秦岭—大别地区的外部挤压消失,导致造山带岩石圈迅速强烈拆沉伸展和减压增温熔融,从而形成大规模早白垩世花岗岩类和中酸性火山岩。总之,东秦岭—大别地区岩石圈拆沉所导致的岩浆活动主要发生在J3—K1的挤压伸展转变期。  相似文献   

13.
Noble gas and cosmic-ray exposure age of Juancheng chondrite   总被引:1,自引:0,他引:1  
The analytical results of noble gase in recently fallen Juancheng chondrite indicate that cosmic-ray ages of cosmogenic nuclei of3He,21Ne and38Ar are 5.1, 5.0 and 5.8 Ma, respectively, averaging 5.3 Ma. The gas retention ages radiogenic nuclei of4He and40Ar are 3 200 and 4 200 Ma, respectively. The average cosmic-ray age shows that it has occurred at breakup of the meteoroid from its parent body by impact before 5.3 Ma.  相似文献   

14.
秦岭西坝花岗岩LA-ICP-MS 锆石 U-Pb 年代学及其地质意义   总被引:13,自引:0,他引:13  
西坝花岗岩位于南秦岭构造带陕西境内, 主要由花岗闪长岩、二长花岗岩和英云闪长岩组成。LA-ICP-MS 锆石U-Pb 原位同位素定年结果表明, 西坝岩体侵位于印支期, 由二长花岗岩样品(XB01-2)得到了219±1 Ma的年龄, 花岗闪长岩样品(XB06-1) 给出的年龄是218±1 Ma, 二者在误差范围内一致, 约218Ma代表了西坝花岗岩体的成岩时代。西坝岩体的年龄结合区域构造背景以及前人研究的地球化学特征, 说明它可能是秦岭主造山期岩浆活动的产物。  相似文献   

15.
Isotopic compositions of noble gases from the Guangmingshan chondrite were analyzed. Based on the analyses of cosmogenic nuclei, cosmic-ray exposure age of the meteorite is (65±10.0) Ma (3He), (80±12) Ma (21Ne) and (65±10.0) Ma (38Ar), with an average of 70 Ma. This is the highest exposure age of H-group ordinary chondrites. Gas retention ages of K-Ar and U, Th-4He are (4230±100) Ma and (3300±60) Ma, respectively. The smaller ages of3He than21Ne and4He than40Ar suggest that both3He and4He lost together. This is probably related to a solar heating effect of a meteorite with a small perihelion during the last exposure period.  相似文献   

16.
The Bangong Lake ophiolite is located in the westernmost part of the Bangong Lake-Nujiang River suture zone. It is a tectonic mélange consisting of numerous individual blocks of peridotite, pillowed and massive lavas and mafic dykes with SSZ-type ophiolitic geochemical affinity formed at the end of a Wilson circle. The SHRIMP U-Pb ages of the co-magmatic zircon domains from one gabbroic dyke (Sample 01Y-155) range from 162.5±8.6 Ma to 177.1±1.4 Ma with an average of 167.0±1.4 Ma (n = 12, MSWD = 1.2), suggesting that the subduction of the Bangong Lake Neo-Tethyan Ocean started before the Middle Jurassic. It is inferred that the tectonic transform from spreading to subduction of the Neo-Tethyan Ocean began before the Middle Jurassic in the Bangong Lake area.  相似文献   

17.
内蒙古大青山晚中生代以来的隆升-剥露过程   总被引:1,自引:0,他引:1  
对大青山东段4件基岩样品进行磷灰石裂变径迹研究,获得该区晚中生代以来的隆升?剥露历史,并探讨大青山现代地貌的形成。样品的磷灰石裂变径迹年龄为57.7±3.8~50.4±3.3 Ma,封闭径迹长度分布在10.7±0.4~9.9±0.1μm之间。热历史模拟结果表明,大青山地区存在晚白垩世(约100~90 Ma)和中?晚中新世(13.5~7 Ma)以来两个快速抬升冷却阶段,13.5~7 Ma以来是本区剥露最快的时期,这一阶段的隆升造就现今大青山的地貌格局。  相似文献   

18.
Fission track geological chronology is an effective method of study on tectonic movement of fault zone. Apatite fission track (AFT) dating analyses of 9-apatite and 4-zircon samples collected from Lhasa to Langkazi, ~70-km-long in SN provide an understanding of the age and the uplifting of both sides of the Yarlung Zangbo Thrust Zone (YZTZ) in this work. The AFT ages range from ~37 to 14 Ma, indicating the time of major tectono-thermal events, i.e. the continent-continent collision along the YZTZ. Based on the relationship between the AFT ages and the sample elevations, there were two tectonic active periods: ~37—20 Ma and 20—14 Ma. In the first period the tectonic event did not bring on differential uplifting. Rapid differential uplifting with rapid cooling, resulting from thrusting, took place in the second period. The vertical displacement was ~1020 m and total ~2.9 km of overburden has been removed from the present-day surface since cooling below ~110℃ began. The maximum cooling and denudation occurred at a rate of ~7℃/Ma and ~207 m/Ma respectively since ~14 Ma. The zircon fission track analysis demonstrates that the temperature of tectono-thermal events did not exceed 310℃.  相似文献   

19.
Different types of UHP metamorphic rocks havebeen recently discovered in the Altyn Tagh[1—4], the north-ern margin of Qadam Basin[5—7], the southwestern Tian-shan Mountains[8,9] and the northern Qinling Moun-tains[10,11] in Central and Western China. And these areashave attracted focus attention of geologists at home andabroad to the studying of UHP metamorphism and conti-nental deep subduction. However, as newly discoveredUHP metamorphic terranes, some questions have beenarisen abou…  相似文献   

20.
In situ U-Pb dating of titanite by LA-ICPMS   总被引:4,自引:0,他引:4  
Titanite is an ideal mineral for U-Pb isotopic dating because of its relatively high U,Th and Pb contents.Here,we developed a technique for U-Pb dating of titanite using the 193 nm ArF laser-ablation system and Agilent 7500a Q-ICP-MS.Standards of titanite (BLR-1 and OLT-1) and zircon (91500 and GJ-1) were dated using single spot and line raster scan analytical methods.To check the matrix effect,titanite (BLR-1) and zircon (91500) standards were analyzed as the external standards.The weighted mean 206 Pb/238 U ages of OLT-1 titanite are 1015±5 Ma (2,n=24) and 1017±6 Ma (2,n=24) by single spot and line raster scan analyses,respectively,using BLR-1 titanite as the external standard.These ages are consistent with its reference age of about 1014 Ma.However,using 91500 zircon as the external standard,the weighted mean 206 Pb/238 U ages are 917±4 Ma (2,n=24) and 927±5 Ma (2,n=24) for BLR-1 titanite,and 891±4 Ma (2,n=24) and 901±5 Ma (2,n=24) for OLT-1 titanite by single spot and line raster scan analyses,respectively.It is evident that these ages are ~12% younger than their reference values.Our results reveal that significant matrix effect does exist between different kinds of minerals during LA-ICPMS U-Pb age determination,whereas it is insignificant between same minerals.Therefore,same mineral must be used as the external standard for fractionation corrections during in situ LA-ICPMS U-Pb age analysis.In addition,we determined U-Pb ages for titanites from the Early Cretaceous Fangshan pluton,which indicates a rapid cooling history of this pluton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号