首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Major histocompatibility complex (MHC) class I molecules bind and deliver peptides derived from endogenously synthesized proteins to the cell surface for survey by cytotoxic T lymphocytes. It is believed that endogenous antigens are generally degraded in the cytosol, the resulting peptides being translocated into the endoplasmic reticulum where they bind to MHC class I molecules. Transporters containing an ATP-binding cassette encoded by the MHC class II region seem to be responsible for this transport. Genes coding for two subunits of the '20S' proteasome (a multicatalytic proteinase) have been found in the vicinity of the two transporter genes in the MHC class II region, indicating that the proteasome could be the unknown proteolytic entity in the cytosol involved in the generation of MHC class I-binding peptides. By introducing rat genes encoding the MHC-linked transporters into a human cell line lacking both transporter and proteasome subunit genes, we show here that the MHC-encoded proteasome subunit are not essential for stable MHC class I surface expression, or for processing and presentation of antigenic peptides from influenza virus and an intracellular protein.  相似文献   

2.
M G Brown  J Driscoll  J J Monaco 《Nature》1991,353(6342):355-357
Major histocompatibility complex (MHC) class I molecules associate with peptides derived from endogenously synthesized antigens. Cytotoxic T-lymphocytes can thus scan class I molecules and bound peptide on the surface of cells for foreign antigenic determinants. Recent evidence demonstrates that the products of trans-acting, non-class I genes in the class II region of the MHC are required in the class I antigen-processing pathway. There are genes (called HAM1 and HAM2 in the mouse) in this region that encode proteins postulated to be involved in the transport of peptide fragments into the endoplasmic reticulum for association with newly synthesized class I molecules. But, the mechanism by which such peptide fragments are produced remains a mystery. At least two genes encoding subunits of the low-molecular mass polypeptide (LMP) complex are tightly linked to the HAM1 and HAM2 genes. We show that the LMP complex is closely related to the proteasome (multicatalytic proteinase complex), an intracellular protein complex that has multiple proteolytic activities. We speculate that the LMP complex may have a role in MHC class I antigen processing, and therefore that the MHC contains a cluster of genes required for distinct functions in the antigen processing pathway.  相似文献   

3.
K Falk  O R?tzschke  H G Rammensee 《Nature》1990,348(6298):248-251
Major histocompatibility complex (MHC) class I molecules present peptides derived from cellular proteins to cytotoxic T lymphocytes (CTLs), which check these peptides for abnormal features. How such peptides arise in the cell is not known. Here we show that the MHC molecules themselves are substantially involved in determining which peptides occur intracellularly: normal mouse spleen cells identical at all genes but MHC class I express different patterns of peptides derived from cellular non-MHC proteins. We suggest several models to explain this influence of MHC class I molecules on cellular peptide composition.  相似文献   

4.
Class I major histocompatibility complex (MHC) molecules function in the recognition of antigens by cytotoxic T lymphocytes (CTL). Although this biological role is firmly established and much has been learnt about their structure and polymorphic variation, little is known of the regions of class I molecules that are involved in functional interactions with components of the T-cell surface. Here we show that peptides derived from residues 98-113 of the alpha 2 domain of HLA-A2 specifically inhibit the recognition of target cells by many HLA-A2-specific CTL. In addition to identifying a region that is probably involved in binding the T-cell receptor these results raise the possibility that alloreactive CTL may recognize degraded fragments of class I histocompatibility antigens.  相似文献   

5.
Second proteasome-related gene in the human MHC class II region   总被引:15,自引:0,他引:15  
A Kelly  S H Powis  R Glynne  E Radley  S Beck  J Trowsdale 《Nature》1991,353(6345):667-668
Antgen processing involves the generation of peptides from cytosolic proteins and their transport into the endoplasmic reticulum where they associate with major histocompatibility complex (MHC) class I molecules. Two genes have been identified in the MHC class II region, RING4 and RING11 in humans, which are believed to encode the peptide transport proteins. Attention is now focused on how the transporters are provided with peptides. The proteasome, a large complex of subunits with multiple proteolytic activities, is a candidate for this function. Recently we reported a proteasome-related sequence, RING10, mapping between the transporter genes. Here we describe a second human proteasome-like gene, RING12, immediately centromeric of the RING4 locus. Therefore RING12, 4, 10 and 11 form a tightly linked cluster of interferon-inducible genes within the MHC with an essential role in antigen processing.  相似文献   

6.
The T-cell immune response is directed against antigenic peptide fragments generated in intracellular compartments, the cytosol or the endocytic system. Peptides derived from cytosolic proteins, usually of biosynthetic origin, are presented efficiently to T-cell receptors by major histocompatibility complex (MHC) class I molecules, with which they assemble, probably in the endoplasmic reticulum (ER). In the absence of recognizable N-terminal signal sequences, such cytosolic peptides must be translocated across the ER membrane by a novel mechanism. Genes apparently involved in the normal assembly and transport of class I molecules may themselves be encoded in the MHC. Here we show that one of these, the rat cim gene, maps to a highly polymorphic part of the MHC class II region encoding two novel members of the family of transmembrane transporters related to multidrug resistance. Other members of this family of transporter proteins are known to be capable of transporting proteins and peptides across membranes independently of the classical secretory pathway. Such molecules are credible candidates for peptide pumps that move fragments of antigenic proteins from the cytosol into the ER.  相似文献   

7.
Physical association between MHC class I molecules and immunogenic peptides   总被引:5,自引:0,他引:5  
Antigenic peptides are presented to T lymphocytes by major histocompatibility complex (MHC) molecules. The binding of peptides to MHC class II molecules has been demonstrated directly, and is found to correlate with the ability of specific class II alleles to restrict the T-cell response to specific peptides. By comparison, a direct demonstration of a physical association between antigenic peptides and MHC class I molecules has proved difficult. A recent report shows that it is possible, however, and the three-dimensional structure of a class I MHC molecule illustrates the site where such binding must occur. Here we describe a simple assay which measures the binding of radiolabelled MHC class I molecules to peptides bound to a solid phase support. We find that class I molecules bind specifically to peptides known to be antigenic for class I-restricted cytotoxic T lymphocytes. Peptides which are recognized by cytotoxic T lymphocytes bind not only to the restricting MHC class I molecule but also to other class I molecules. Our results suggest that quantitative differences in the peptide/MHC class I interaction may influence the-pattern of MHC restriction observed in vivo.  相似文献   

8.
Immune recognition of intracellular proteins is mediated by major histocompatibility complex (MHC) class I molecules that present short peptides to cytotoxic T cells. Evidence suggests that peptides arise by cleavage of proteins in the cytoplasm and are transported by a signal-independent mechanism into a pre-Golgi region of the cell, where they take part in the assembly of class I heavy chains with beta 2-microglobulin (reviewed in refs 5-7). Analysis of cells that have defects in class I molecule assembly and antigen presentation has shown that this phenotype can result from mutations in either of the two ABC transporter genes located in the class II region of the MHC. This suggested that the protein complex encoded by these two genes transports peptides from the cytosol into the endoplasmic reticulum. Here we report additional evidence by showing that the transporter complex is located in the endoplasmic reticulum membrane and is probably oriented with its ATP-binding domains in the cytosol.  相似文献   

9.
Serwold T  Gonzalez F  Kim J  Jacob R  Shastri N 《Nature》2002,419(6906):480-483
The ability of killer T cells carrying the CD8 antigen to detect tumours or intracellular pathogens requires an extensive display of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of potential target cells. These peptides are derived from almost all intracellular proteins and reveal the presence of foreign pathogens and mutations. How cells produce thousands of distinct peptides cleaved to the precise lengths required for binding different MHC class I molecules remains unknown. The peptides are cleaved from endogenously synthesized proteins by the proteasome in the cytoplasm and then trimmed by an unknown aminopeptidase in the endoplasmic reticulum (ER). Here we identify ERAAP, the aminopeptidase associated with antigen processing in the ER. ERAAP has a broad substrate specificity, and its expression is strongly upregulated by interferon-gamma. Reducing the expression of ERAAP through RNA interference prevents the trimming of peptides for MHC class I molecules in the ER and greatly reduces the expression of MHC class I molecules on the cell surface. Thus, ERAAP is the missing link between the products of cytosolic processing and the final peptides presented by MHC class I molecules on the cell surface.  相似文献   

10.
P A Roche  P Cresswell 《Nature》1990,345(6276):615-618
Class II major histocompatibility complex (MHC) molecules are heterodimeric cell surface glycoproteins which bind and present immunogenic peptides to T lymphocytes. Such peptides are normally derived from protein antigens internalized and proteolytically degraded by the antigen-presenting cell. Class I MHC molecules also bind immunogenic peptides, but these are derived from proteins synthesized within the target cell. Whereas class I molecules seem to bind peptides in the endoplasmic reticulum, class II molecules are thought to bind peptides late in transport. Intracellular class II molecules associate in the endoplasmic reticulum with a third glycoprotein, the invariant (I) chain, which is proteolytically removed before cell surface expression of the alpha beta class II heterodimer. It has been suggested that the I chain prevents peptides from associating with class II molecules early in transport. Preventing such binding until the class II molecules enter an endosomal compartment could maintain the functional dichotomy between class I and class II MHC molecules. We have examined the ability of I chain-associated HLA-DR5 molecules to bind a well characterized influenza haemagglutinin-derived peptide (HAp). The results show that whereas mature HLA-DR alpha beta dimers effectively bind this peptide, the I chain-associated form does not.  相似文献   

11.
T Spies  M Bresnahan  S Bahram  D Arnold  G Blanck  E Mellins  D Pious  R DeMars 《Nature》1990,348(6303):744-747
Major histocompatibility complex (MHC) class I molecules export peptides to the cell surface for surveillance by cytotoxic T lymphocytes. Intracellular peptide binding is critical for the proper assembly and transport of class I molecules. This mechanism is impaired as a result of a non-functional peptide supply factor gene (PSF) in several human mutant cell lines with genomic lesions in the MHC. We have now identified PSF in the MHC class II region by deletion mapping in mutants and chromosome-walking. PSF is homologous to mammalian and bacterial ATP-dependent transport proteins, suggesting that it operates in the intracellular transport of peptides.  相似文献   

12.
R Glynne  S H Powis  S Beck  A Kelly  L A Kerr  J Trowsdale 《Nature》1991,353(6342):357-360
It is now possible to paint a detailed picture of how cytoplasmic proteins are handled by the immune system. They are apparently degraded in the cytoplasm into peptides. These are then transported into the endoplasmic reticulum where they encounter class I major histocompatibility complex (MHC) molecules. Once loaded with peptide, the HLA molecules move through the Golgi apparatus to the cell membrane. Until recently, it had not been established how peptides without signal sequences cross the ER membrane. However, a number of papers have now described a pair of membrane transporter genes of the ABC (ATP-binding cassette) super-family which are attractive candidates for this function. Both transporter genes, which may encode two halves of a heterodimer, are situated in the class II region of the MHC. There is evidence that other putative components of the processing machinery, the LMPs (low molecular mass polypeptides), are also encoded in the MHC. Similarities between the properties of the LMPs and a large intracellular protease complex, called proteasome, have led to the suggestion that LMPs are involved in processing antigens. We have now identified a human gene with sequence homology to proteasome components. Remarkably, this gene maps between the two putative peptide transporter genes.  相似文献   

13.
Sigal LJ  Crotty S  Andino R  Rock KL 《Nature》1999,398(6722):77-80
Cytotoxic T lymphocytes (CTLs) are thought to detect viral infections by monitoring the surface of all cells for the presence of viral peptides bound to major histocompatibility complex (MHC) class I molecules. In most cells, peptides presented by MHC class I molecules are derived exclusively from proteins synthesized by the antigen-bearing cells. Macrophages and dendritic cells also have an alternative MHC class I pathway that can present peptides derived from extracellular antigens; however, the physiological role of this process is unclear. Here we show that virally infected non-haematopoietic cells are unable to stimulate primary CTL-mediated immunity directly. Instead, bone-marrow-derived cells are required as antigen-presenting cells (APCs) to initiate anti-viral CTL responses. In these APCs, the alternative (exogenous) MHC class I pathway is the obligatory mechanism for the initiation of CTL responses to viruses that infect only non-haematopoietic cells.  相似文献   

14.
C K Martinez  J J Monaco 《Nature》1991,353(6345):664-667
The class II region of the major histocompatibility complex (MHC) contains genes encoding at least two subunits of a large, intracellular protein complex (the low molecular mass polypeptide, or LMP, complex). This complex is biochemically similar to the proteasome, an abundant and well conserved protein complex having multiple proteolytic activities. Here we report the isolation of a complementary DNA corresponding to one of the subunits of the LMP complex, LMP-2. The protein predicted from this cDNA sequence closely matches the amino-terminal peptide sequence of a rat proteasome subunit, confirming that the proteasome and the LMP complex share polypeptide subunits. The LMP-2 gene is tightly linked to HAM1, a gene thought to be required for translocating peptide fragments of endogenous antigens into the endoplasmic reticulum for association with MHC class I molecules. These observations suggest that the LMP complex may be responsible for generating peptides from cytoplasmic antigen during antigen processing.  相似文献   

15.
Synthetic peptides have been used to sensitize target cells and thereby screen for epitopes recognized by T cells. Most epitopes of cytotoxic T lymphocytes can be mimicked by synthetic peptides of 12-15 amino acids. Although in specific cases, truncations of peptides improves sensitization of target cells, no optimum length for binding to major histocompatibility complex (MHC) class I molecules has been defined. We have now analysed synthetic peptide captured by empty MHC class I molecules of the mutant cell line RMA-S. We found that class I molecules preferentially bound short peptides (nine amino acids) and selectively bound these peptides even when they were a minor component in a mixture of longer peptides. These results may help to explain the difference in size restriction of T-cell epitopes between experiments with synthetic peptides and those with naturally processed peptides.  相似文献   

16.
The CD4 and CD8 molecules are transmembrane glycoproteins expressed by functionally distinct subsets of mature T cells. CD4+ and CD8+ T cells recognize antigens on major histocompatibility complex (MHC) class II-bearing and class I-bearing target cells respectively. The ability of monoclonal antibodies against CD4 and CD8 to block antigen recognition by T cells, as well as cell-cell adhesion assays, indicate that CD4 and CD8 bind to nonpolymorphic determinants of class II or class I MHC. Here we demonstrate that soluble recombinant HLA-DR4 molecules from insect cells and HLA-DR-derived peptides bind to immobilized recombinant soluble CD4. CD4 binds recombinant soluble DR4 heterodimers, as well as the soluble DR4-beta chain alone. Furthermore, two out of twelve DR4-beta peptides could interact specifically with CD4. These findings show that CD4 interacts with a region of MHC class II molecules analogous to a previously identified loop in class I MHC proteins that binds CD8 (refs 8, 9).  相似文献   

17.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

18.
MHC antigens in urine as olfactory recognition cues   总被引:10,自引:0,他引:10  
P B Singh  R E Brown  B Roser 《Nature》1987,327(6118):161-164
The classical class I antigens of the major histocompatibility complex (MHC) are cell-surface glycoproteins which were originally discovered because they cause rapid rejection of cells or tissues grafted between unrelated individuals. These molecules are encoded by the K, D and L loci of the mouse MHC (and analogous loci in other species) which show extreme species polymorphism and a large number of alleles. In an outbreeding population 3.6 X 10(9) unique MHC class I phenotypes can be encoded by the 100 alleles at each of the K and D loci and the 6 alleles at the L locus. This level of polymorphism ensures that the cells and tissues of each unrelated individual are uniquely identified by their class I membrane-bound antigens. Like other membrane bound proteins, these class I molecules are anchored in the lipid bilayer by a hydrophobic domain encoded by exon 5. However, there have been reports of the occurrence of classical class I molecules in true solution in the blood of humans, mice, and rats. We report here that classical polymorphic class I molecules in normal rats are constitutively excreted in the urine and that untrained rats can distinguish the smell of urine samples taken from normal donors that differ only at the class I MHC locus and therefore excrete different allelomorphs of class I molecules in their urine.  相似文献   

19.
K Falk  O R?tzschke  S Stevanovi?  G Jung  H G Rammensee 《Nature》1991,351(6324):290-296
The crystal structures of major histocompatibility complex (MHC) molecules contain a groove occupied by heterogeneous material thought to represent peptides central to immune recognition, although until now relatively little characterization of the peptides has been possible. Exact information about the contents of MHC grooves is now provided. Moreover, each MHC class I allele has its individual rules to which peptides presented in the groove adhere.  相似文献   

20.
Empty MHC class I molecules come out in the cold   总被引:43,自引:0,他引:43  
Major histocompatibility complex (MHC) class I molecules present antigen by transporting peptides from intracellularly degraded proteins to the cell surface for scrutiny by cytotoxic T cells. Recent work suggests that peptide binding may be required for efficient assembly and intracellular transport of MHC class I molecules, but it is not clear whether class I molecules can ever assemble in the absence of peptide. We report here that culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19-33 degrees C) promotes assembly, and results in a high level of cell surface expression of H-2/beta 2-microglobulin complexes that do not present endogenous antigens, and are labile at 37 degrees C. They can be stabilized at 37 degrees C by exposure to specific peptides known to interact with H-2Kb or Db. Our findings suggest that, in the absence of peptides, class I molecules can assemble but are unstable at body temperature. The induction of such molecules at reduced temperature opens new ways to analyse the nature of MHC class I peptide interactions at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号