首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toni N  Buchs PA  Nikonenko I  Bron CR  Muller D 《Nature》1999,402(6760):421-425
Structural remodelling of synapses and formation of new synaptic contacts has been postulated as a possible mechanism underlying the late phase of long-term potentiation (LTP), a form of plasticity which is involved in learning and memory. Here we use electron microscopy to analyse the morphology of synapses activated by high-frequency stimulation and identified by accumulated calcium in dendritic spines. LTP induction resulted in a sequence of morphological changes consisting of a transient remodelling of the postsynaptic membrane followed by a marked increase in the proportion of axon terminals contacting two or more dendritic spines. Three-dimensional reconstruction revealed that these spines arose from the same dendrite. As pharmacological blockade of LTP prevented these morphological changes, we conclude that LTP is associated with the formation of new, mature and probably functional synapses contacting the same presynaptic terminal and thereby duplicating activated synapses.  相似文献   

2.
NMDA application potentiates synaptic transmission in the hippocampus   总被引:13,自引:0,他引:13  
J A Kauer  R C Malenka  R A Nicoll 《Nature》1988,334(6179):250-252
The NMDA (N-methyl-D-aspartate) class of glutamate receptor plays a critical role in a variety of forms of synaptic plasticity in the vertebrate central nervous system. One extensively studied example of plasticity is long-term potentiation (LTP), a remarkably long-lasting enhancement of synaptic efficiency induced in the hippocampus by brief, high-frequency stimulation of excitatory synapses. LTP is a strong candidate for a cellular mechanism of learning and memory. The site of LTP induction appears to be the postsynaptic cell and induction requires both activation of NMDA receptors by synaptically released glutamate and depolarization of the postsynaptic membrane. It is proposed that this depolarization relieves a voltage-dependent Mg2+ block of the NMDA receptor channel, resulting in increased calcium influx which is the trigger for the induction of LTP. This model predicts that application of a large depolarizing dose of NMDA should be sufficient to evoke LTP. In agreement with a previous study, we have found that NMDA or glutamate application does potentiate synaptic transmission in the hippocampus. This agonist-induced potentiation is, however, decremental and short-lived, unlike LTP. It is occluded shortly after the induction of LTP and a similar short-term potentiation can be evoked by synaptically released glutamate. We thus propose that LTP has two components, a short-term, decremental component which can be mimicked by NMDA receptor activation, and a long-lasting, non-decremental component which, in addition to requiring activation of NMDA receptors, requires stimulation of presynaptic afferents.  相似文献   

3.
Neurotransmission at most excitatory synapses in the brain operates through two types of glutamate receptor termed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors; these mediate the fast and slow components of excitatory postsynaptic potentials respectively. Activation of NMDA receptors can also lead to a long-lasting modification in synaptic efficiency at glutamatergic synapses; this is exemplified in the CA1 region of the hippocampus, where NMDA receptors mediate the induction of long-term potentiation (LTP). It is believed that in this region LTP is maintained by a specific increase in the AMPA receptor-mediated component of synaptic transmission. We now report, however, that a pharmacologically isolated NMDA receptor-mediated synaptic response can undergo robust, synapse-specific LTP. This finding has implications for neuropathologies such as epilepsy and neurodegeneration, in which excessive NMDA receptor activation has been implicated. It adds fundamentally to theories of synaptic plasticity because NMDA receptor activation may, in addition to causing increased synaptic efficiency, directly alter the plasticity of synapses.  相似文献   

4.
Liu QS  Pu L  Poo MM 《Nature》2005,437(7061):1027-1031
Drugs of abuse are known to cause persistent modification of neural circuits, leading to addictive behaviours. Changes in synaptic plasticity in dopamine neurons of the ventral tegmental area (VTA) may contribute to circuit modification induced by many drugs of abuse, including cocaine. Here we report that, following repeated exposure to cocaine in vivo, excitatory synapses to rat VTA dopamine neurons become highly susceptible to the induction of long-term potentiation (LTP) by correlated pre- and postsynaptic activity. This facilitated LTP induction is caused by cocaine-induced reduction of GABA(A) (gamma-aminobutyric acid) receptor-mediated inhibition of these dopamine neurons. In midbrain slices from rats treated with saline or a single dose of cocaine, LTP could not be induced in VTA dopamine neurons unless GABA-mediated inhibition was reduced by bicuculline or picrotoxin. However, LTP became readily inducible in slices from rats treated repeatedly with cocaine; this LTP induction was prevented by enhancing GABA-mediated inhibition using diazepam. Furthermore, repeated cocaine exposure reduced the amplitude of GABA-mediated synaptic currents and increased the probability of spike initiation in VTA dopamine neurons. This cocaine-induced enhancement of synaptic plasticity in the VTA may be important for the formation of drug-associated memory.  相似文献   

5.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

6.
Nugent FS  Penick EC  Kauer JA 《Nature》2007,446(7139):1086-1090
Excitatory brain synapses are strengthened or weakened in response to specific patterns of synaptic activation, and these changes in synaptic strength are thought to underlie persistent pathologies such as drug addiction, as well as learning. In contrast, there are few examples of synaptic plasticity of inhibitory GABA (gamma-aminobutyric acid)-releasing synapses. Here we report long-term potentiation of GABA(A)-mediated synaptic transmission (LTP(GABA)) onto dopamine neurons of the rat brain ventral tegmental area, a region required for the development of drug addiction. This novel form of LTP is heterosynaptic, requiring postsynaptic NMDA (N-methyl-d-aspartate) receptor activation at glutamate synapses, but resulting from increased GABA release at neighbouring inhibitory nerve terminals. NMDA receptor activation produces nitric oxide, a retrograde signal released from the postsynaptic dopamine neuron. Nitric oxide initiates LTP(GABA) by activating guanylate cyclase in GABA-releasing nerve terminals. Exposure to morphine both in vitro and in vivo prevents LTP(GABA). Whereas brief treatment with morphine in vitro blocks LTP(GABA) by inhibiting presynaptic glutamate release, in vivo exposure to morphine persistently interrupts signalling from nitric oxide to guanylate cyclase. These neuroadaptations to opioid drugs might contribute to early stages of addiction, and may potentially be exploited therapeutically using drugs targeting GABA(A) receptors.  相似文献   

7.
Matsuzaki M  Honkura N  Ellis-Davies GC  Kasai H 《Nature》2004,429(6993):761-766
Dendritic spines of pyramidal neurons in the cerebral cortex undergo activity-dependent structural remodelling that has been proposed to be a cellular basis of learning and memory. How structural remodelling supports synaptic plasticity, such as long-term potentiation, and whether such plasticity is input-specific at the level of the individual spine has remained unknown. We investigated the structural basis of long-term potentiation using two-photon photolysis of caged glutamate at single spines of hippocampal CA1 pyramidal neurons. Here we show that repetitive quantum-like photorelease (uncaging) of glutamate induces a rapid and selective enlargement of stimulated spines that is transient in large mushroom spines but persistent in small spines. Spine enlargement is associated with an increase in AMPA-receptor-mediated currents at the stimulated synapse and is dependent on NMDA receptors, calmodulin and actin polymerization. Long-lasting spine enlargement also requires Ca2+/calmodulin-dependent protein kinase II. Our results thus indicate that spines individually follow Hebb's postulate for learning. They further suggest that small spines are preferential sites for long-term potentiation induction, whereas large spines might represent physical traces of long-term memory.  相似文献   

8.
Dendritic spikes as a mechanism for cooperative long-term potentiation   总被引:22,自引:0,他引:22  
Golding NL  Staff NP  Spruston N 《Nature》2002,418(6895):326-331
Strengthening of synaptic connections following coincident pre- and postsynaptic activity was proposed by Hebb as a cellular mechanism for learning. Contemporary models assume that multiple synapses must act cooperatively to induce the postsynaptic activity required for hebbian synaptic plasticity. One mechanism for the implementation of this cooperation is action potential firing, which begins in the axon, but which can influence synaptic potentiation following active backpropagation into dendrites. Backpropagation is limited, however, and action potentials often fail to invade the most distal dendrites. Here we show that long-term potentiation of synapses on the distal dendrites of hippocampal CA1 pyramidal neurons does require cooperative synaptic inputs, but does not require axonal action potential firing and backpropagation. Rather, locally generated and spatially restricted regenerative potentials (dendritic spikes) contribute to the postsynaptic depolarization and calcium entry necessary to trigger potentiation of distal synapses. We find that this mechanism can also function at proximal synapses, suggesting that dendritic spikes participate generally in a form of synaptic potentiation that does not require postsynaptic action potential firing in the axon.  相似文献   

9.
Lee HK  Barbarosie M  Kameyama K  Bear MF  Huganir RL 《Nature》2000,405(6789):955-959
Bidirectional changes in the efficacy of neuronal synaptic transmission, such as hippocampal long-term potentiation (LTP) and long-term depression (LTD), are thought to be mechanisms for information storage in the brain. LTP and LTD may be mediated by the modulation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazloe proprionic acid) receptor phosphorylation. Here we show that LTP and LTD reversibly modify the phosphorylation of the AMPA receptor GluR1 subunit. However, contrary to the hypothesis that LTP and LTD are the functional inverse of each other, we find that they are associated with phosphorylation and dephosphorylation, respectively, of distinct GluR1 phosphorylation sites. Moreover, the site modulated depends on the stimulation history of the synapse. LTD induction in naive synapses dephosphorylates the major cyclic-AMP-dependent protein kinase (PKA) site, whereas in potentiated synapses the major calcium/calmodulin-dependent protein kinase II (CaMKII) site is dephosphorylated. Conversely, LTP induction in naive synapses and depressed synapses increases phosphorylation of the CaMKII site and the PKA site, respectively. LTP is differentially sensitive to CaMKII and PKA inhibitors depending on the history of the synapse. These results indicate that AMPA receptor phosphorylation is critical for synaptic plasticity, and that identical stimulation conditions recruit different signal-transduction pathways depending on synaptic history.  相似文献   

10.
Synaptic scaling mediated by glial TNF-alpha   总被引:1,自引:0,他引:1  
Stellwagen D  Malenka RC 《Nature》2006,440(7087):1054-1059
Two general forms of synaptic plasticity that operate on different timescales are thought to contribute to the activity-dependent refinement of neural circuitry during development: (1) long-term potentiation (LTP) and long-term depression (LTD), which involve rapid adjustments in the strengths of individual synapses in response to specific patterns of correlated synaptic activity, and (2) homeostatic synaptic scaling, which entails uniform adjustments in the strength of all synapses on a cell in response to prolonged changes in the cell's electrical activity. Without homeostatic synaptic scaling, neural networks can become unstable and perform suboptimally. Although much is known about the mechanisms underlying LTP and LTD, little is known about the mechanisms responsible for synaptic scaling except that such scaling is due, at least in part, to alterations in receptor content at synapses. Here we show that synaptic scaling in response to prolonged blockade of activity is mediated by the pro-inflammatory cytokine tumour-necrosis factor-alpha (TNF-alpha). Using mixtures of wild-type and TNF-alpha-deficient neurons and glia, we also show that glia are the source of the TNF-alpha that is required for this form of synaptic scaling. We suggest that by modulating TNF-alpha levels, glia actively participate in the homeostatic activity-dependent regulation of synaptic connectivity.  相似文献   

11.
J M Bekkers  C F Stevens 《Nature》1989,341(6239):230-233
A CENTRAL assumption about long-term potentiation in the hippocampus is that the two classes of glutamate-receptor ion channel, the N-methyl-D-aspartate (NMDA) and the kainate/quisqualate (non-NMDA) subtypes, are co-localized at individual excitatory synapses. This assumption is important because of the perceived interplay between NMDA and non-NMDA receptors in the induction and expression of long-term potentiation: the NMDA class, by virtue of its voltage-dependent channel block by magnesium and calcium permeability, provides the trigger for the induction of long-term potentiation, whereas the actual enhancement of synaptic efficacy is thought to be provided by the non-NMDA class. If both receptor subtypes are present at the one synapse, such cross-modulation could occur rapidly and locally through diffusible factors. By measuring miniature synaptic currents in cultured hippocampal neurons we show that the majority (approximately 70%) of the excitatory synapses on a postsynaptic cell possess both kinds of receptor, although to different extents. Of the remaining excitatory synapses, approximately 20% contain only the non-NMDA subtype and the rest possess only NMDA receptors. This finding provides direct evidence for co-localization of glutamate-receptor subtypes at individual synapses, and also points to the possibility that long-term potentiation might be differentially expressed at each synapse according to the mix of receptor subtypes at that synapse.  相似文献   

12.
Humeau Y  Shaban H  Bissière S  Lüthi A 《Nature》2003,426(6968):841-845
The induction of associative synaptic plasticity in the mammalian central nervous system classically depends on coincident presynaptic and postsynaptic activity. According to this principle, associative homosynaptic long-term potentiation (LTP) of excitatory synaptic transmission can be induced only if synaptic release occurs during postsynaptic depolarization. In contrast, heterosynaptic plasticity in mammals is considered to rely on activity-independent, non-associative processes. Here we describe a novel mechanism underlying the induction of associative LTP in the lateral amygdala (LA). Simultaneous activation of converging cortical and thalamic afferents specifically induced associative, N-methyl-D-aspartate (NMDA)-receptor-dependent LTP at cortical, but not at thalamic, inputs. Surprisingly, the induction of associative LTP at cortical inputs was completely independent of postsynaptic activity, including depolarization, postsynaptic NMDA receptor activation or an increase in postsynaptic Ca2+ concentration, and did not require network activity. LTP expression was mediated by a persistent increase in the presynaptic probability of release at cortical afferents. Our study shows the presynaptic induction and expression of heterosynaptic and associative synaptic plasticity on simultaneous activity of converging afferents. Our data indicate that input specificity of associative LTP can be determined exclusively by presynaptic properties.  相似文献   

13.
D M Kullmann  R A Nicoll 《Nature》1992,357(6375):240-244
Long-term potentiation (LTP) of synaptic transmission in CA1 neurons of the hippocampus, elicited by the conjunction of presynaptic firing and postsynaptic depolarization, is an important model of plasticity, which may underlie memory storage. Although induction of LTP takes place in the postsynaptic cell, it is not clear whether it is expressed through an enhancement of transmitter release or through an increased postsynaptic response to the same amount of transmitter. Analysis of the trial-to-trial amplitude fluctuations of synaptic signals, that is quantal analysis, gives an important insight into the probabilistic mechanisms of transmission, although attempts to apply it to the mode of expression of LTP have so far yielded inconsistent results, at least in part because they have relied on models of transmitter release that have not been confirmed experimentally. Here we report clear evidence for quantal fluctuation in a subset of cells. Induction of LTP in these cells causes abrupt increases in either quantal content or quantal amplitude, or both. This shows that two different mechanisms can underlie the maintenance of LTP.  相似文献   

14.
Long-term potentiation (LTP) in the hippocampus is widely studied as the mechanisms involved in its induction and maintenance are believed to underlie fundamental properties of learning and memory in vertebrates. Most synapses that exhibit LTP use an excitatory amino-acid neurotransmitter that acts on two types of receptor, the N-methyl-D-aspartate (NMDA) and quisqualate receptors. The quisqualate receptor mediates the fast synaptic response evoked by low-frequency stimulation, whereas the NMDA receptor system is activated transiently by tetanic stimulation, leading to the induction of LTP. The events responsible for maintaining LTP once it is established are not known. We now demonstrate that the sensitivity of CA1 neurons in hippocampal slices to ionophoretically-applied quisqualate receptor ligands slowly increases following the induction of LTP. This provides direct evidence for a functional post-synaptic change and suggests that pre-synaptic mechanisms also contribute, but in a temporally distinct manner, to the maintenance of LTP.  相似文献   

15.
W G Regehr  D W Tank 《Nature》1990,345(6278):807-810
In the CA1 hippocampal region, intracellular calcium is a putative second messenger for the induction of long-term potentiation (LTP), a persistent increase of synaptic transmission produced by high frequency afferent fibre stimulation. Because LTP in this region is blocked by the NMDA (N-methyl-D-aspartate) receptor antagonist AP5 (DL-2-amino-5-phosphonovaleric acid) and the calcium permeability of NMDA receptors is controlled by a voltage-dependent magnesium block, a model has emerged that suggests that the calcium permeability of NMDA receptor-coupled ion channels is the biophysical basis for LTP induction. We have performed microfluorometric measurements in individual CA1 pyramidal cells during stimulus trains that induce LTP. In addition to a widespread component of postsynaptic calcium accumulation previously described, we now report that brief high frequency stimulus trains produce a transient component spatially localized to dendritic areas near activated afferents. This localized component is blocked by the NMDA receptor antagonist AP5. The results directly confirm the calcium rise predicted by NMDA receptor models of LTP induction.  相似文献   

16.
Royer S  Paré D 《Nature》2003,422(6931):518-522
Memory is believed to depend on activity-dependent changes in the strength of synapses. In part, this view is based on evidence that the efficacy of synapses can be enhanced or depressed depending on the timing of pre- and postsynaptic activity. However, when such plastic synapses are incorporated into neural network models, stability problems may develop because the potentiation or depression of synapses increases the likelihood that they will be further strengthened or weakened. Here we report biological evidence for a homeostatic mechanism that reconciles the apparently opposite requirements of plasticity and stability. We show that, in intercalated neurons of the amygdala, activity-dependent potentiation or depression of particular glutamatergic inputs leads to opposite changes in the strength of inputs ending at other dendritic sites. As a result, little change in total synaptic weight occurs, even though the relative strength of inputs is modified. Furthermore, hetero- but not homosynaptic alterations are blocked by intracellular dialysis of drugs that prevent Ca2+ release from intracellular stores. Thus, in intercalated neurons at least, inverse heterosynaptic plasticity tends to compensate for homosynaptic long-term potentiation and depression, thus stabilizing total synaptic weight.  相似文献   

17.
GABA autoreceptors regulate the induction of LTP.   总被引:19,自引:0,他引:19  
Understanding the mechanisms involved in long-term potentiation (LTP) should provide insights into the cellular and molecular basis of learning and memory in vertebrates. It has been established that in the CA1 region of the hippocampus the induction of LTP requires the transient activation of the N-methyl-D-aspartate (NMDA) receptor system. During low-frequency transmission, significant activation of this system is prevented by gamma-aminobutyric acid (GABA) mediated synaptic inhibition which hyperpolarizes neurons into a region where NMDA receptor-operated channels are substantially blocked by Mg2+ (refs. 5, 6). But during high-frequency transmission, mechanisms are evoked that provide sufficient depolarization of the postsynaptic membrane to reduce this block and thereby permit the induction of LTP. We now report that this critical depolarization is enabled because during high-frequency transmission GABA depresses its own release by an action on GABAB autoreceptors, which permits sufficient NMDA receptor activation for the induction of LTP. These findings demonstrate a role for GABAB receptors in synaptic plasticity.  相似文献   

18.
Nishiyama M  Hong K  Mikoshiba K  Poo MM  Kato K 《Nature》2000,408(6812):584-588
Activity-induced synaptic modification is essential for the development and plasticity of the nervous system. Repetitive correlated activation of pre- and postsynaptic neurons can induce persistent enhancement or decrement of synaptic efficacy, commonly referred to as long-term potentiation or depression (LTP or LTD). An important unresolved issue is whether and to what extent LTP and LTD are restricted to the activated synapses. Here we show that, in the CA1 region of the hippocampus, reduction of postsynaptic calcium influx by partial blockade of NMDA (N-methyl-D-aspartate) receptors results in a conversion of LTP to LTD and a loss of input specificity normally associated with LTP, with LTD appearing at heterosynaptic inputs. The induction of LTD at homo- and heterosynaptic sites requires functional ryanodine receptors and inositol triphosphate (InsP3) receptors, respectively. Functional blockade or genetic deletion of type 1 InsP3 receptors led to a conversion of LTD to LTP and elimination of heterosynaptic LTD, whereas blocking ryanodine receptors eliminated only homosynaptic LTD. Thus, postsynaptic Ca2+, deriving from Ca2+ influx and differential release of Ca2+ from internal stores through ryanodine and InsP3 receptors, regulates both the polarity and input specificity of activity-induced synaptic modification.  相似文献   

19.
RIM1alpha is required for presynaptic long-term potentiation.   总被引:8,自引:0,他引:8  
Two main forms of long-term potentiation (LTP)-a prominent model for the cellular mechanism of learning and memory-have been distinguished in the mammalian brain. One requires activation of postsynaptic NMDA (N-methyl d-aspartate) receptors, whereas the other, called mossy fibre LTP, has a principal presynaptic component. Mossy fibre LTP is expressed in hippocampal mossy fibre synapses, cerebellar parallel fibre synapses and corticothalamic synapses, where it apparently operates by a mechanism that requires activation of protein kinase A. Thus, presynaptic substrates of protein kinase A are probably essential in mediating this form of long-term synaptic plasticity. Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable. Here we report that mossy fibre LTP in the hippocampus and the cerebellum is abolished in mice lacking RIM1alpha, an active zone protein that binds to Rab3A and that is also a protein kinase A substrate. Our results indicate that the long-term increase in neurotransmitter release during mossy fibre LTP may be mediated by a unitary mechanism that involves the GTP-dependent interaction of Rab3A with RIM1alpha at the interface of synaptic vesicles and the active zone.  相似文献   

20.
R Gray  D Johnston 《Nature》1987,327(6123):620-622
The predominance of unconventional transmitter release sites at noradrenaline-containing synapses and the diffuse projections of noradrenaline-containing fibres originating in locus coeruleus have led to speculation that noradrenaline may act as a neuromodulator in the central nervous system. Evidence suggests that it has a modulatory function in the plasticity of the developing nervous system, in controlling behavioural states of an organism, and in learning and memory. Recently, Hopkins and Johnston demonstrated that noradrenaline enhances the magnitude, duration and probability of induction of long-term potentiation (LTP) at mossy fibre synapses in the hippocampal formation, and LTP is widely believed to be a cellular substrate for aspects of memory. To investigate the membrane effects of noradrenaline on central neurons, we used a newly developed preparation in which patch-clamp techniques can be applied to exposed adult cortical neurons. We report here that noradrenaline produces an enhancement in the activity of voltage-dependent calcium channels in granule cells of the hippocampal dentate gyrus. This action appears to be mediated by beta-adrenoceptors and can be mimicked by cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号