首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate α-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the αN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg?80 and Gly?81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.  相似文献   

3.
Guse A  Carroll CW  Moree B  Fuller CJ  Straight AF 《Nature》2011,477(7364):354-358
During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.  相似文献   

4.
Zhou Z  Feng H  Zhou BR  Ghirlando R  Hu K  Zwolak A  Miller Jenkins LM  Xiao H  Tjandra N  Wu C  Bai Y 《Nature》2011,472(7342):234-237
The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3-H4)(2) heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.  相似文献   

5.
McGinty RK  Kim J  Chatterjee C  Roeder RG  Muir TW 《Nature》2008,453(7196):812-816
Numerous post-translational modifications of histones have been described in organisms ranging from yeast to humans. Growing evidence for dynamic regulation of these modifications, position- and modification-specific protein interactions, and biochemical crosstalk between modifications has strengthened the 'histone code' hypothesis, in which histone modifications are integral to choreographing the expression of the genome. One such modification, ubiquitylation of histone H2B (uH2B) on lysine 120 (K120) in humans, and lysine 123 in yeast, has been correlated with enhanced methylation of lysine 79 (K79) of histone H3 (refs 5-8), by K79-specific methyltransferase Dot1 (KMT4). However, the specific function of uH2B in this crosstalk pathway is not understood. Here we demonstrate, using chemically ubiquitylated H2B, a direct stimulation of hDot1L-mediated intranucleosomal methylation of H3 K79. Two traceless orthogonal expressed protein ligation (EPL) reactions were used to ubiquitylate H2B site-specifically. This strategy, using a photolytic ligation auxiliary and a desulphurization reaction, should be generally applicable to the chemical ubiquitylation of other proteins. Reconstitution of our uH2B into chemically defined nucleosomes, followed by biochemical analysis, revealed that uH2B directly activates methylation of H3 K79 by hDot1L. This effect is mediated through the catalytic domain of hDot1L, most likely through allosteric mechanisms. Furthermore, asymmetric incorporation of uH2B into dinucleosomes showed that the enhancement of methylation was limited to nucleosomes bearing uH2B. This work demonstrates a direct biochemical crosstalk between two modifications on separate histone proteins within a nucleosome.  相似文献   

6.
One way in which a distinct chromosomal domain could be established to carry out a specialized function is by the localized incorporation of specific histone variants into nucleosomes. H2AZ, one such variant of the histone protein H2A, is required for the survival of Drosophila melanogaster, Tetrahymena thermophila and mice (R. Faast et al., in preparation). To search for the unique features of Drosophila H2AZ (His2AvD, also referred to as H2AvD) that are required for its essential function, we have performed amino-acid swap experiments in which residues unique to Drosophila His2AvD were replaced with equivalently positioned Drosophila H2A.1 residues. Mutated His2AvD genes encoding modified versions of this histone were transformed into Drosophila and tested for their ability to rescue null-mutant lethality. We show that the unique feature of His2AvD does not reside in its histone fold but in its carboxy-terminal domain. This C-terminal region maps to a short alpha-helix in H2A that is buried deep inside the nucleosome core.  相似文献   

7.
Lee MG  Wynder C  Cooch N  Shiekhattar R 《Nature》2005,437(7057):432-435
  相似文献   

8.
Masumoto H  Hawke D  Kobayashi R  Verreault A 《Nature》2005,436(7048):294-298
DNA breaks are extremely harmful lesions that need to be repaired efficiently throughout the genome. However, the packaging of DNA into nucleosomes is a significant barrier to DNA repair, and the mechanisms of repair in the context of chromatin are poorly understood. Here we show that lysine 56 (K56) acetylation is an abundant modification of newly synthesized histone H3 molecules that are incorporated into chromosomes during S phase. Defects in the acetylation of K56 in histone H3 result in sensitivity to genotoxic agents that cause DNA strand breaks during replication. In the absence of DNA damage, the acetylation of histone H3 K56 largely disappears in G2. In contrast, cells with DNA breaks maintain high levels of acetylation, and the persistence of the modification is dependent on DNA damage checkpoint proteins. We suggest that the acetylation of histone H3 K56 creates a favourable chromatin environment for DNA repair and that a key component of the DNA damage response is to preserve this acetylation.  相似文献   

9.
Eukaryotic genomes are packaged into nucleosomes, which are thought to repress gene expression generally. Repression is particularly evident at yeast telomeres, where genes within the telomeric heterochromatin appear to be silenced by the histone-binding silent information regulator (SIR) complex (Sir2, Sir3, Sir4) and Rap1 (refs 4-10). Here, to investigate how nucleosomes and silencing factors influence global gene expression, we use high-density arrays to study the effects of depleting nucleosomal histones and silencing factors in yeast. Reducing nucleosome content by depleting histone H4 caused increased expression of 15% of genes and reduced expression of 10% of genes, but it had little effect on expression of the majority (75%) of yeast genes. Telomere-proximal genes were found to be de-repressed over regions extending 20 kilobases from the telomeres, well beyond the extent of Sir protein binding and the effects of loss of Sir function. These results indicate that histones make Sir-independent contributions to telomeric silencing, and that the role of histones located elsewhere in chromosomes is gene specific rather than generally repressive.  相似文献   

10.
11.
12.
Martinez-Perez E  Shaw P  Moore G 《Nature》2001,411(6834):204-207
The correct pairing and segregation of chromosomes during meiosis is essential for genetic stability and subsequent fertility. This is more difficult to achieve in polyploid species, such as wheat, because they possess more than one diploid set of similar chromosomes. In wheat, the Ph1 locus ensures correct homologue pairing and recombination. Although clustering of telomeres into a bouquet early in meiosis has been suggested to facilitate homologue pairing, centromeres associate in pairs in polyploid cereals early during floral development. We can now extend this observation to root development. Here we show that the Ph1 locus acts both meiotically and somatically by reducing non-homologous centromere associations. This has the effect of promoting true homologous association when centromeres are induced to associate. In fact, non-homologously associated centromeres separate at the beginning of meiosis in the presence, but not the absence, of Ph1. This permits the correction of homologue association during the telomere-bouquet stage in meiosis. We conclude that the Ph1 locus is not responsible for the induction of centromere association, but rather for its specificity.  相似文献   

13.
14.
着丝粒的关键作用是保证细胞减数分裂和有丝分裂的顺利进行,保证生物的遗传.近年来随着对多个物种的着丝粒测序之后对着丝粒的功能提出了很多相互矛盾的假说.本文阐述了低等真核生物的着丝粒没有重复序列而高等真核生物的着丝粒具有大量的重复序列,并且简述了各物种着丝粒的组成和各类与组蛋白H3、核仁、着丝粒DNA序列及DNA的高级结构相关的着丝粒功能模型.  相似文献   

15.
The RCAF complex mediates chromatin assembly during DNA replication and repair   总被引:42,自引:0,他引:42  
Chromatin assembly is a fundamental biological process that is essential for the replication and maintenance of the eukaryotic genome. In dividing cells, newly synthesized DNA is rapidly assembled into chromatin by the deposition of a tetramer of the histone proteins H3 and H4, followed by the deposition of two dimers of histones H2A and H2B to complete the nucleosome-the fundamental repeating unit of chromatin. Here we describe the identification, purification, cloning, and characterization of replication-coupling assembly factor (RCAF), a novel protein complex that facilitates the assembly of nucleosomes onto newly replicated DNA in vitro. RCAF comprises the Drosophila homologue of anti-silencing function 1 protein ASF1 and histones H3 and H4. The specific acetylation pattern of H3 and H4 in RCAF is identical to that of newly synthesized histones. Genetic analyses in Saccharomyces cerevisiae demonstrate that ASF1 is essential for normal cell cycle progression, and suggest that RCAF mediates chromatin assembly after DNA replication and the repair of double-strand DNA damage in vivo.  相似文献   

16.
17.
18.
利用间接免疫萎光标记技术研究Ser10磷酸化的组蛋白H3和微管蛋白在小麦根尖细胞中有丝分裂过程中的动态分布情况.结果显示在小麦根尖细胞有丝分裂过程中Ser10磷酸化的组蛋白H3的出现和消失与染色体的凝集和解凝集的过程存在时空上的相关性,在有丝分裂的过程中这种蛋白在着经线粒上的定位有有助于染色体向两极移动.研究结果还表明,在有丝分裂过程中,微管蛋白发生了重组,成束的垂直排列在赤道板的两侧,协助细胞有丝分裂过程的顺利完成.  相似文献   

19.
In vitro replication through nucleosomes without histone displacement   总被引:18,自引:0,他引:18  
C Bonne-Andrea  M L Wong  B M Alberts 《Nature》1990,343(6260):719-726
A well-characterized set of proteins encoded by bacteriophage T4 replicates DNA in vitro and generates replication forks that can pass nucleosomes. The histone octamers remain associated with newly replicated DNA even in the presence of excess DNA competitor, and intact nucleosomes re-form on the two daughter DNA helices. It is concluded that nucleosomes are designed to open up transiently to allow the passage of a replication fork without histone displacement.  相似文献   

20.
Mammals use DNA methylation for the heritable silencing of retrotransposons and imprinted genes and for the inactivation of the X chromosome in females. The establishment of patterns of DNA methylation during gametogenesis depends in part on DNMT3L, an enzymatically inactive regulatory factor that is related in sequence to the DNA methyltransferases DNMT3A and DNMT3B. The main proteins that interact in vivo with the product of an epitope-tagged allele of the endogenous Dnmt3L gene were identified by mass spectrometry as DNMT3A2, DNMT3B and the four core histones. Peptide interaction assays showed that DNMT3L specifically interacts with the extreme amino terminus of histone H3; this interaction was strongly inhibited by methylation at lysine 4 of histone H3 but was insensitive to modifications at other positions. Crystallographic studies of human DNMT3L showed that the protein has a carboxy-terminal methyltransferase-like domain and an N-terminal cysteine-rich domain. Cocrystallization of DNMT3L with the tail of histone H3 revealed that the tail bound to the cysteine-rich domain of DNMT3L, and substitution of key residues in the binding site eliminated the H3 tail-DNMT3L interaction. These data indicate that DNMT3L recognizes histone H3 tails that are unmethylated at lysine 4 and induces de novo DNA methylation by recruitment or activation of DNMT3A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号