首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
Magnetic control of ferroelectric polarization   总被引:1,自引:0,他引:1  
Kimura T  Goto T  Shintani H  Ishizaka K  Arima T  Tokura Y 《Nature》2003,426(6962):55-58
The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon. From a technological point of view, the mutual control of electric and magnetic properties is an attractive possibility, but the number of candidate materials is limited and the effects are typically too small to be useful in applications. Here we report the discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO3, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.  相似文献   

2.
Chiba D  Sawicki M  Nishitani Y  Nakatani Y  Matsukura F  Ohno H 《Nature》2008,455(7212):515-518
Conventional semiconductor devices use electric fields to control conductivity, a scalar quantity, for information processing. In magnetic materials, the direction of magnetization, a vector quantity, is of fundamental importance. In magnetic data storage, magnetization is manipulated with a current-generated magnetic field (Oersted-Ampère field), and spin current is being studied for use in non-volatile magnetic memories. To make control of magnetization fully compatible with semiconductor devices, it is highly desirable to control magnetization using electric fields. Conventionally, this is achieved by means of magnetostriction produced by mechanically generated strain through the use of piezoelectricity. Multiferroics have been widely studied in an alternative approach where ferroelectricity is combined with ferromagnetism. Magnetic-field control of electric polarization has been reported in these multiferroics using the magnetoelectric effect, but the inverse effect-direct electrical control of magnetization-has not so far been observed. Here we show that the manipulation of magnetization can be achieved solely by electric fields in a ferromagnetic semiconductor, (Ga,Mn)As. The magnetic anisotropy, which determines the magnetization direction, depends on the charge carrier (hole) concentration in (Ga,Mn)As. By applying an electric field using a metal-insulator-semiconductor structure, the hole concentration and, thereby, the magnetic anisotropy can be controlled, allowing manipulation of the magnetization direction.  相似文献   

3.
Observation of coupled magnetic and electric domains   总被引:14,自引:0,他引:14  
Ferroelectromagnets are an interesting group of compounds that complement purely (anti-)ferroelectric or (anti-)ferromagnetic materials--they display simultaneous electric and magnetic order. With this coexistence they supplement materials in which magnetization can be induced by an electric field and electrical polarization by a magnetic field, a property which is termed the magnetoelectric effect. Aside from its fundamental importance, the mutual control of electric and magnetic properties is of significant interest for applications in magnetic storage media and 'spintronics'. The coupled electric and magnetic ordering in ferroelectromagnets is accompanied by the formation of domains and domain walls. However, such a cross-correlation between magnetic and electric domains has so far not been observed. Here we report spatial maps of coupled antiferromagnetic and ferroelectric domains in YMnO3, obtained by imaging with optical second harmonic generation. The coupling originates from an interaction between magnetic and electric domain walls, which leads to a configuration that is dominated by the ferroelectromagnetic product of the order parameters.  相似文献   

4.
六角HoMnO3材料是近年来多铁性磁电材料研究中一个极其重要且具有代表性的材料.文章全面概述了多铁材料HoMnO3的磁电性质以及近年来国内外的相关研究进展,包括HoMnO3的低温自旋交换作用、磁性相变、外加电场诱导的磁化改变、铁电极化机理以及由于磁弹、自旋晶格耦合、自旋声子耦合作用导致的巨磁电效应等.重点评述了HoMn...  相似文献   

5.
六角HoMnO3材料是近年来多铁性磁电材料研究中一个极其重要且具有代表性的材料.文章全面概述了多铁材料HoMnO3的磁电性质以及近年来国内外的相关研究进展,包括HoMnO3的低温自旋交换作用、磁性相变、外加电场诱导的磁化改变、铁电极化机理以及由于磁弹、自旋晶格耦合、自旋声子耦合作用导致的巨磁电效应等.重点评述了HoMnO3材料磁电效应产生的物理机制,在此基础上,讨论了应用过程中存在的问题,提出了解决的可能途径.  相似文献   

6.
电场调控的自旋翻转因在低能耗高密度的新型存储器件中有巨大的应用潜力而受到人们的广泛关注.在复相多铁材料中,利用磁电耦合效应有可能实现电场调控自旋的翻转.我们在CoPt/PMN-PT异质结中,利用电场调控矫顽力的变化,实现了电场调控自旋的翻转.在铁磁形状记忆合金Mn-Ni-Sn与0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3组成的复合材料中,通过电场调控交换偏置场的变化,无需偏置磁场就可以实现电场调控自旋的翻转.  相似文献   

7.
多铁异质结中的磁电耦合效应是凝聚态物理和材料物理的研究热点之一.相比单相的多铁材料,多铁异质结中界面处的自旋、电荷、轨道以及晶格之间存在着复杂的相互作用,导致出现一些新的物理现象,使得其在新一代的存储器、传感器、微波等领域中具有重要的应用前景.文章介绍近年来在多铁异质结方向取得的进展,着重介绍实现电场对磁性控制的场效应、应变效应、交换偏置效应等,以及磁场对多铁性的调控,从而获得很大的磁电耦合效应;分析了多铁隧道结及其磁电耦合效应,其集成了传统铁电隧道结和铁磁隧道结的优势,可大幅度提高单个存储单元存储状态,从而提高存储密度.最后提出当前面临的问题和对未来的展望.  相似文献   

8.
具有磁电效应的A类反铁磁系统的自旋波理论   总被引:1,自引:0,他引:1  
自旋波理论通常用来研究低温下各类铁磁、反铁磁的磁性质 .运用自旋波理论 ,考虑外电场作用下产生的磁电效应 ,研究了A类反铁磁系统在主要高对称性方向的自旋波频谱以及由于磁电效应而发生的改变 .发现磁电效应电场的作用相当于一个虚构的磁场 ,能够引起自旋波能谱的分裂  相似文献   

9.
磁电多铁性材料兼具电极化及磁性,可用于构建新型传感器和高密度存储器件.但对于单相多铁性材料,大多工作温度低且所需磁场强度较高,无法满足实用化需求.近来发现六角铁氧体可明显提高这两方面特性,但还需提高其工作温度及电阻率.我们采用Co-Ti元素对M-型钡六角铁氧体进行大剂量共掺杂,制备一系列的铁氧体陶瓷BaFe12-2xCoxTixO19 (x=0~4).同时利用物理性能综合测试仪(PPMS)及其他检测仪器搭建了一套磁电测试系统,并结合LabVIEW软件进行编程,对样品的磁性、电性、磁介电和磁电耦合特性进行系统表征.结果表明,Co-Ti共掺杂可显著改变M型钡六角铁氧体的矫顽场及饱和磁化强度.同时,这种掺杂可使漏电流降低到3个量级(掺杂量x=2).值得一提的是,我们在掺杂量为x=2的样品中观测到室温下的磁介电效应,同时在100K以下观测到明显的磁致铁电极化,且其电极化方向可以被磁场反转.该结果在探索新型多铁六角铁氧体及推进其应用化进程具有一定的意义.  相似文献   

10.
利用有效场理论研究纳米管上最近邻原子间强交换相互作用对Blume-Capel模型磁化强度的影响,得到系统格点的磁化强度与最近邻强交换相互作用和晶格场强度的关系。结果表明,最近邻强交换相互作用和晶格场强度等诸多因素相互竞争,使系统表现出丰富的磁学特性:正晶格场促进系统的磁化强度,且系统仅发生二级相变;负晶格场抑制系统的磁化强度,且系统发生一级和二级相变;不同位置的强交换相互作用对系统的磁化强度影响程度不同。  相似文献   

11.
Electric-field control of ferromagnetism   总被引:12,自引:0,他引:12  
Ohno H  Chiba D  Matsukura F  Omiya T  Abe E  Dietl T  Ohno Y  Ohtani K 《Nature》2000,408(6815):944-946
It is often assumed that it is not possible to alter the properties of magnetic materials once they have been prepared and put into use. For example, although magnetic materials are used in information technology to store trillions of bits (in the form of magnetization directions established by applying external magnetic fields), the properties of the magnetic medium itself remain unchanged on magnetization reversal. The ability to externally control the properties of magnetic materials would be highly desirable from fundamental and technological viewpoints, particularly in view of recent developments in magnetoelectronics and spintronics. In semiconductors, the conductivity can be varied by applying an electric field, but the electrical manipulation of magnetism has proved elusive. Here we demonstrate electric-field control of ferromagnetism in a thin-film semiconducting alloy, using an insulating-gate field-effect transistor structure. By applying electric fields, we are able to vary isothermally and reversibly the transition temperature of hole-induced ferromagnetism.  相似文献   

12.
考虑到Landau自由能在平衡态时必须是稳定的以及Landau唯象模型中的每一个序参量都必须是实数,BiFeO_3材料的Landau自由能展开系数被重新计算.利用这些参数,模拟了电滞回线、磁滞回线和随外加磁场变化的磁电耦合系数,理论结果与最近报道的实验结果吻合得很好.  相似文献   

13.
以Landau唯象热力学理论为基础,求得了与电场相关的压电相状态方程,结合磁致伸缩相状态方程和一定的边界条件,研究了外电场对磁电电压系数的影响.结果显示:用来极化铁电层的外电场对磁电作用有很大的影响,随着外电场的增大,横向和纵向的磁电电压系数将明显减小,从而有效分析了磁电电压系数实验值小于理论值的可能原因.  相似文献   

14.
A magnetoelectric composite transformer is proposed. The voltage step-up ratio can be adjusted by an applied magnetic field based on the direct and converse magnetoelectric effects. The nonlinear relationship between the voltage step-up ratio and magnetic field is caused by the nonlinear relationship of the magnetoelectric effect in magnetic field.  相似文献   

15.
Wang Y  Rogado NS  Cava RJ  Ong NP 《Nature》2003,423(6938):425-428
In an electric field, the flow of electrons in a solid produces an entropy current in addition to the familiar charge current. This is the Peltier effect, and it underlies all thermoelectric refrigerators. The increased interest in thermoelectric cooling applications has led to a search for more efficient Peltier materials and to renewed theoretical investigation into how electron-electron interaction may enhance the thermopower of materials such as the transition-metal oxides. An important factor in this enhancement is the electronic spin entropy, which is predicted to dominate the entropy current. However, the crucial evidence for the spin-entropy term, namely its complete suppression in a longitudinal magnetic field, has not been reported until now. Here we report evidence for such suppression in the layered oxide Na(x)Co2O4, from thermopower and magnetization measurements in both longitudinal and transverse magnetic fields. The strong dependence of thermopower on magnetic field provides a rare, unambiguous example of how strong electron-electron interaction effects can qualitatively alter electronic behaviour in a solid. We discuss the implications of our finding--that spin-entropy dominates the enhancement of thermopower in transition-metal oxides--for the search for better Peltier materials.  相似文献   

16.
一般情况下在感生(涡旋)电场中是不能引入电势和电势差的概念的,但当有导体参与时,自由电子在涡旋电场的作用下重新分布,出现了电荷的堆积,因而建立了静电场,从而可以比较电势的高低.接入常用的磁电型电压表对该电势差进行测量和计算,会发现不同的连接方式,测量和计算的结果不同;甚至会发现同时接入多个电压表时,各块表的测量和计算结果也不相同.  相似文献   

17.
以电磁场理论为基础,从场与介质相互作用的角度详细分析了介质中电(磁)场能量密度的物理意义,将介质中的电磁能量密度分解为电(磁)场能量密度和介质的极(磁)化能量密度.极(磁)化能量密度决定于极(磁)化强度和外场强度.在交变电(磁)场中产生电磁能量损耗的物理机制是,由于非线性介质中的各种阻尼作用,电(磁)偶极矩跟不上外场的变化而出现弛豫损耗,电磁能量被损耗转换为热能.利用极(磁)化能量密度公式导出在简谐交变外场中电磁能量损耗的平均功率密度表达式,该损耗功率密度与介质的相对介电常数(磁导率)的虚部、外场频率和场强的平方成正比.电磁能量密度时变值分解为场能时变值、极(磁)化能时变值和电磁损耗时变值.  相似文献   

18.
Materials in which magnetic and electric order coexist--termed 'multiferroics' or 'magnetoelectrics'--have recently become the focus of much research. In particular, the simultaneous occurrence of ferromagnetism and ferroelectricity, combined with an intimate coupling of magnetization and polarization via magnetocapacitive effects, holds promise for new generations of electronic devices. Here we present measurements on a simple cubic spinel compound with unusual, and potentially useful, magnetic and electric properties: it shows ferromagnetic order coexisting with relaxor ferroelectricity (a ferroelectric cluster state with a smeared-out phase transition), both having sizable ordering temperatures and moments. Close to the ferromagnetic ordering temperature, the magnetocapacitive coupling (characterized by a variation of the dielectric constant in an external magnetic field) reaches colossal values, approaching 500 per cent. We attribute the relaxor properties to geometric frustration, which is well known for magnetic moments but here is found to impede long-range order of the structural degrees of freedom that drive the formation of the ferroelectric state.  相似文献   

19.
Taga A  Nordstrom L  James P  Johansson B  Eriksson O 《Nature》2000,406(6793):280-282
Certain materials have an electrical conductivity that is extremely sensitive to an applied magnetic field; this phenomenon, termed 'giant magnetoresistance', can be used in sensor applications. Typically, such a device comprises several ferromagnetic layers, separated by non-magnetic spacer layer(s)--a so-called 'super-lattice' geometry. In the absence of a magnetic field, the ferromagnetic layers may be magnetized in opposite directions by interlayer exchange coupling, while an applied external magnetic field causes the magnetization directions to become parallel. Because the resistivity depends on the magnetization direction, an applied field that changes the magnetic configuration may be detected simply by measuring the change in resistance. In order to detect weak fields, the energy difference between different magnetization directions should be small; this is usually achieved by using many non-magnetic atomic spacer layers. Here we show, using first-principles theory, that materials combinations such as Fe/V/Co multilayers can produce a non-collinear magnetic state in which the magnetization direction between Fe and Co layers differs by about 90 degrees. This state is energetically almost degenerate with the collinear magnetic states, even though the number of non-magnetic vanadium spacer layers is quite small.  相似文献   

20.
Various present and future specialized applications of magnets require monodisperse, small magnetic particles, and the discovery of molecules that can function as nanoscale magnets was an important development in this regard. These molecules act as single-domain magnetic particles that, below their blocking temperature, exhibit magnetization hysteresis, a classical property of macroscopic magnets. Such 'single-molecule magnets' (SMMs) straddle the interface between classical and quantum mechanical behaviour because they also display quantum tunnelling of magnetization and quantum phase interference. Quantum tunnelling of magnetization can be advantageous for some potential applications of SMMs, for example, in providing the quantum superposition of states required for quantum computing. However, it is a disadvantage in other applications, such as information storage, where it would lead to information loss. Thus it is important to both understand and control the quantum properties of SMMs. Here we report a supramolecular SMM dimer in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical analysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. This system may also prove useful for studying quantum tunnelling of relevance to mesoscopic antiferromagnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号