首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Hyperbolic空间中,讨论关于一有限簇全渐近非扩张映象与另一有限簇全渐近非扩张非自映象公共不动点的问题,引入了一个混合型迭代序列 * ,并在适当的条件下证明了Δ-收敛定理及混合型迭代序列{xn}Δ-收敛于F 的一公共不动点。(注:*处为公式)
  相似文献   

2.
Chidume首次提出渐近非扩张非自映象、一致L-Lipschitz非自映象的定义,并证明了所引入的迭代序列强收敛于渐近非扩张非自映象的不动点.该文引入渐近伪压缩非自映象的概念,并对一致L-Lipschitz的渐近伪压缩非自映象T提出了具误差的修改的Ishikawa迭代序列{xn}.设K是实Banach空间E的收缩核,P是从E到K上的非扩张的收缩映象.若存在严格增加函数φ:[0,∞)→[0,∞),φ(0)=0,(E)j(xn+1-x*)∈J(xn+1-x*)使得〈T(PT)n-1xn+1-T(PT)n-1x*,j(xn+1-x*)〉≤kn‖xn+1-x*‖2-φ(‖xn+1-x*‖),(A)n≥1,x*是T的不动点,在对参数的一些限制条件下,本文证明了迭代序列{xn}强收敛于非自映象T的不动点x*,其目的是把对渐近伪压缩映象的迭代结果推广到渐近伪压缩非自映象上,从而推广了以前的结果.  相似文献   

3.
Chidume首次提出渐近非扩张非自映象、一致L—Lipschitz非自映象的定义,并证明了所引入的迭代序列强收敛于渐近非扩张非自映象的不动点。该文引入渐近伪压缩非自映象的概念,并对一致L-Lipschitz的渐近伪压缩非自映象71提出了具误差的修改的Ishikawa迭代序列{xn}。设K是实Banach空间E的收缩核,P是从E到K上的非扩张的收缩映象。若存在严格增加函数φ:[0,∞)→[0,∞),φ(0)=0,E←j(xa+1-x^*)∈J(xn+1-x^*)使得(T(PT)^n+1xa+1-T(PT)^n-1x^*,j(xa+1-x^*))≤kn||xn+1-x^*||^2-φ(||xn+1-x^*||,A↓n≥1,x^*是T的不动点,在对参数的一些限制条件下,本文证明了迭代序列{xn}强收敛于非自映象T的不动点x^*,其目的是把对渐近伪压缩映象的迭代结果推广到渐近伪压缩非自映象上,从而推广了以前的结果。  相似文献   

4.
在双曲空间中,讨论了一有限簇全渐近非扩张非自映象与另一有限簇全渐近非扩张映象公共不动点的问题,引入了一个混合型迭代序列.并在适当的条件下,证明了一个强收敛定理.所得结果推广和改进了已有结果.  相似文献   

5.
E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xx)+βnTrnnyn yn=(1-γn)xn+γnTrnnxn,n≥0其中{αn},{βn},{γn}[0,1],rn=n mod N.文章在一定条件下,用黏性逼近法证明了迭代序列{xn}强收敛于T1,T2,…,TN的公共不动点.该文结果推广和改进了一些文献的最新结果.  相似文献   

6.
有限簇非扩张非自映象的黏性逼近   总被引:2,自引:1,他引:1  
设E是一自反的Banach空间,具有E到E·的弱序列连续的正规对偶映象,K是E的非空闭凸子集而且是E的sunny非扩张收缩核.设f:K→K是一压缩映象,T1,T2,...,TN:K→E是一有限簇非扩张非自映象且∩Ni=1Fix(Ti)≠Ф.序列{xn}定义为xn+1=P(αnf(xn)+(1-αn)Tnyn),yn=P(βnxn+(1-βn)Tnxn), (A)n≥1,其中{αn},{βn}(∪)[0,1],P:E→K是一sunny非扩张保核收缩,Tn=Tn(modN).用黏性逼近方法证明了迭代序列{xn}强收敛于T1,T2,...,TN的公共不动点的充分必要条件,也推广和改进了一些文献的最新结果.  相似文献   

7.
设X是一实赋范空间,D是X的非空凸子集.Ti:D→D(i=1,2,…,m)是m个渐近一致φ-伪压缩的一致L-Lipschitzian映象.证明了在一定条件下,关于{xn}的迭代:xn+1=(1-α1,n)xn+α1,n T1^ny1,n;y1,n(=1-α2,n)xn+α2,nT2^ny2,n;…;ym-1,n=(1-αm,n)xn+αm,n Tm^xxn, n≥0强收敛于有限个渐近-致φ-伪压缩的一致L—Lipschitzian映象Ti(i=1,2,…,m)的公共不动点.  相似文献   

8.
设X是一实赋范空间,D是X的非空凸子集.Ti:D→D(i=1,2,…,m)是m个渐近一致φ-伪压缩的一致L-Lipschitzian映象.证明了在一定条件下,关于{xn}的迭代:xn+1=(1-α1,n)xn+α1,n T1^ny1,n;y1,n(=1-α2,n)xn+α2,nT2^ny2,n;…;ym-1,n=(1-αm,n)xn+αm,n Tm^xxn, n≥0强收敛于有限个渐近-致φ-伪压缩的一致L—Lipschitzian映象Ti(i=1,2,…,m)的公共不动点.  相似文献   

9.
Chidume首次提出渐近非扩张非自映象、一致L-Lipschitz非自映象的定义,并证明了所引入的迭代序列强收敛于渐进非扩张非自映象的不动点。本文引入渐近拟伪压缩型非自映象的概念。设E是实Banach空间,K是E的收缩核,P是从E到K上的非扩张收缩映象,T是一致L-Lipschitz的渐近拟伪压缩型非自映象,在对参数的一些限制条件下,给出了带误差修改的Ishikawa迭代序列强收敛于T的不动点的充要条件,即存在[0,+∞)上的严格增加函数φ(s),φ(0)=0,使得lim supn→∞j(xn+1-x*)inf∈J(xn+1-x*)[〈T(PT)n-1 xn+1-x*,j(xn+1-x*)〉-kn‖xn+1-x*‖2+φ(‖xn+1-x*‖)]≤0。目的是把对渐近拟伪压缩型自映象的迭代结果推广到渐近拟伪压缩型非自映象,从而推广了以前的结果。  相似文献   

10.
K是实Banach空间E中的非空闭凸子集,T1,T2,…,TN:K→K是N个一致Li-Lipshitz渐近伪压缩映象,{xn}是K中如下定义的迭代序列:{xn+1=(1-αn)xn+αnTikyn yn=(1-βn)xn+βnTixn n≥0其中,n=(k-1)N+i,i∈I={1,2,…,N}.在适当的条件下证明了以上迭代序列强收敛于T1,T2,…,TN的公共不动点.  相似文献   

11.
在严格凸的Banach空间E中,本文介绍了一种新的复合迭代方法强收敛到非扩张映像公共不动点.K是E中非空闭凸子集,Tn∶K→K,(n=1,2,…)是一致渐近正则非扩张映像列。{xn}是由复合黏滞格式定义的迭代序列,我们证明了当n→∞时,{xn}强收敛到Tn(n=1,2…)的公共不动点.本文改进和推广了Y.S.Song,R.D.Cheng,H.Y.Zhou的相应结果.  相似文献   

12.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:7,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

13.
渐近非扩张映象的粘性逼近序列的强收敛定理   总被引:1,自引:0,他引:1  
假设E是具有一致Gateaux可微范数的实Banach空间,D是E的非空闭凸子集,f∶D→D是压缩映象,T∶D→D是渐近非扩张映象。设粘性逼近序列{xn}定义为xn 1=αnf(yn) (1-αn)Tnyn,yn=βnxn (1-βn)Tnxn(n≥0),其中αn∈[0,1],βn∈[0,1]。本文给出了{xn}强收敛于T的不动点的充要条件:若{αn}满足如下条件:limn→∞αn=0,∑∞n=0αn=∞,定义一簇压缩映象Sn∶D→D为Sn(z)=(1-dn)f(z) dnTnz,z∈D,其中dn=ktnn--αα,tn∈(α,1)(n=1,2,…),limn→∞tn=1且k2n-1≤(1-dn)2,n≥n0,设zn∈D是Sn的唯一不动点,即zn=Sn(zn)=(1-dn)f(zn) dnTnzn,n≥1,若limn→∞‖xn-Txn‖=0且{zn}强收敛于z*∈F(T),则{xn}强收敛于z*∈F(T)的充分必要条件是{yn}有界。本文的结果不仅是对Reich公开问题的解答,而且是对Reich[1-2]、Shioji和Takahashi[3]、张石生[4]相应结果的推广。  相似文献   

14.
首先讨论一个由非扩展映象的有限族所定义的迭代格式,主要证明了:设E为满足Opial条件的一致凸的Banach空间,C是E的非空间凸子集,Fi:C→C(i=1,2,…,r)为有限非扩展映象,且∩ri=1 F(Ti)非空,设x1∈C,迭代地定义序列{xn}如下:xn+1=Wnxn,(V)n≥1.其中Wn(n=1,2,…)为由T1,T2,…,Tr生成的W-映象.则{xn}弱收敛于T1,T2,…,Tr的共同不动点.  相似文献   

15.
首先将序列{xn}的迭代定义为:x0∈K,xn+1=(1-α1n)xn+α1nTn1y1n,y1n=(1-α2n)xn+α2nTn2y2n,...,y(m-1)n=(1-αmn)xn+αmnTnmxn,其中{αin}满足一定的条件.若存在严格增加的函数:[0,∞)→[0,∞),且(0)=0,使得〈Tnix-x*,j(x-y)〉≤kn‖x-x*‖2-(‖x-x*‖),j(x-x*)∈J(x-x*),x∈K,i=1,2,...,m,那么{xn}强收敛到x*.x*是K中有限个一致L-李普希茨映象的公共不动点. K是Banach空间E的非空闭凸子集.  相似文献   

16.
设E是实Banach空间,C是E的非空闭凸子集,T:C→C是一致L-Lipschitz的中间意义下的渐近k-严格伪压缩映象且∑∞n=1γn<∞,任取一点x0∈E,{xn}是根据xn+1=(1-αn-βn)xn+αnTnxn+βnun定义的具误差的修改的Mann迭代序列,若F(T)非空有界,在对参数的一些适当限制条件下,得到了{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0;去掉F(T)有界的条件后对参数进行同样的限制,得到了根据xn+1=(1-αn)xn+αnTnxn定义的修改的Mann迭代序列{xn}强收敛于T的一个不动点的充要条件是lim infn→∞D (xn,F(T))=0。  相似文献   

17.
本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)〈∞,又设F(T)有界,且T在F(T)中的点处一致连续。任取一点x0∈C,{xn}是根据xn+1=αnxn+βnTnyn+γnunyn=ξnxn+ηnTnxn+δnvn定义的具误差的修改的Ishikawa迭代得到的,其中{un},{vn}是C中的两个有界点列,{αn},{βn},{γn},{ξn},{ηn},{δn}是[0,1]中的6个数列且满足αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn〈+∞,∑∞n=1γn〈+∞。则{xn}强收敛于T的不动点的充要条件是limn→∞infd(xn,F(T))=0,其中d(x,A)为x到集合A的距离。本文的结果推广改进了文献[1-7]中的结论。  相似文献   

18.
设E是一致凸Banach空间,C是E的非空闭凸子集,而且C也是E的非扩张收缩核,设{Ti}No=1:C→E是N个渐进拟非扩张非自映象,定义新的迭代序列{xn},该文证明了,若F=∩Ni=1F(Ti)≠φ且存在某Tl(1≤l≤N)是半紧的,则迭代序列{xn}强收敛于{Ti}Ni=1的公共不动点.该文结果也改进和推广了一些人的最新结果.  相似文献   

19.
若Ti,i=1,2,…,N的公共不动点集Fix(∩iN=1Ti)非空,则在Banach空间中证明了一族中间意义上的渐进非扩张映象的带误差的多步迭代序列收敛到这族映象的某一公共不动点,从而改进和推广Somyot Plubtieng和其他作者的相应结果.  相似文献   

20.
设K是Banach空间E中非空闭凸集.{Ti}i-1^N是K中具公共不动点集F=∩i-1^NF(Ti)的Lipschitz映像族,其中F(Ti)=(x∈KiTix=x},{αn}n-1^∞},{βn}n-1^∞包含[0,1]是实数列,且∑n=1∞(1-αn)〈+∞,(1-αn)L^2〈1,这里L是{Ti}i=1^N的公共Lipschitz系数.对任意x0∈K,{xn}n-1^∞由文中隐格式组(2)和(3)产生,则(i){xn}在K中收敛;(ii){xn}收敛于{Ti)i=1^N公共不动点的充分必要条件是lim d(xn,F)=0.对于(2),如聚βn=0。隐格式组变为xn=αnxn-1+(1-αn)Tm^2xn,如果βn=1,隐格式组变为Xu与Or1的形式xn=αnxn-1+(1-αn)Tnxn,对于(3),如果βn=1,隐格式组变为显格式xn=αnxn-1+(1-αn)Tnxn-1.对于这三种特殊迭代格式,结论(i)(ii)自然成立.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号