首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation   总被引:1,自引:0,他引:1  
Chromatin insulators demarcate expression domains by blocking the cis effects of enhancers or silencers in a position-dependent manner. We show that the chromatin insulator protein CTCF carries a post-translational modification: poly(ADP-ribosyl)ation. Chromatin immunoprecipitation analysis showed that a poly(ADP-ribosyl)ation mark, which exclusively segregates with the maternal allele of the insulator domain in the H19 imprinting control region, requires the bases that are essential for interaction with CTCF. Chromatin immunoprecipitation-on-chip analysis documented that the link between CTCF and poly(ADP-ribosyl)ation extended to more than 140 mouse CTCF target sites. An insulator trap assay showed that the insulator function of most of these CTCF target sites is sensitive to 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase activity. We suggest that poly(ADP-ribosyl)ation imparts chromatin insulator properties to CTCF at both imprinted and nonimprinted loci, which has implications for the regulation of expression domains and their demise in pathological lesions.  相似文献   

2.
3.
4.
Estrogen receptor-α (ER) is the key feature of most breast cancers and binding of ER to the genome correlates with expression of the Forkhead protein FOXA1 (also called HNF3α). Here we show that FOXA1 is a key determinant that can influence differential interactions between ER and chromatin. Almost all ER-chromatin interactions and gene expression changes depended on the presence of FOXA1 and FOXA1 influenced genome-wide chromatin accessibility. Furthermore, we found that CTCF was an upstream negative regulator of FOXA1-chromatin interactions. In estrogen-responsive breast cancer cells, the dependency on FOXA1 for tamoxifen-ER activity was absolute; in tamoxifen-resistant cells, ER binding was independent of ligand but depended on FOXA1. Expression of FOXA1 in non-breast cancer cells can alter ER binding and function. As such, FOXA1 is a major determinant of estrogen-ER activity and endocrine response in breast cancer cells.  相似文献   

5.
An expansion of a CTG repeat at the DM1 locus causes myotonic dystrophy (DM) by altering the expression of the two adjacent genes, DMPK and SIX5, and through a toxic effect of the repeat-containing RNA. Here we identify two CTCF-binding sites that flank the CTG repeat and form an insulator element between DMPK and SIX5. Methylation of these sites prevents binding of CTCF, indicating that the DM1 locus methylation in congenital DM would disrupt insulator function. Furthermore, CTCF-binding sites are associated with CTG/CAG repeats at several other loci. We suggest a general role for CTG/CAG repeats as components of insulator elements at multiple sites in the human genome.  相似文献   

6.
Eukaryotic chromosomes are packaged in nuclei by many orders of folding. Little is known about how higher-order chromatin packaging might affect gene expression. SATB1 is a cell-type specific nuclear protein that recruits chromatin-remodeling factors and regulates numerous genes during thymocyte differentiation. Here we show that in thymocyte nuclei, SATB1 has a cage-like 'network' distribution circumscribing heterochromatin and selectively tethers specialized DNA sequences onto its network. This was shown by fluorescence in situ hybridization on wild-type and Satb1-null thymocytes using in vivo SATB1-bound sequences as probes. Many gene loci, including that of Myc and a brain-specific gene, are anchored by the SATB1 network at specific genomic sites, and this phenomenon is precisely correlated with proper regulation of distant genes. Histone-modification analyses across a gene-enriched genomic region of 70 kb showed that acetylation of histone H3 at Lys9 and Lys14 peaks at the SATB1-binding site and extends over a region of roughly 10 kb covering genes regulated by SATB1. By contrast, in Satb1-null thymocytes, this site is marked by methylation at H3 Lys9. We propose SATB1 as a new type of gene regulator with a novel nuclear architecture, providing sites for tissue-specific organization of DNA sequences and regulating region-specific histone modification.  相似文献   

7.
CTCF maintains differential methylation at the Igf2/H19 locus   总被引:21,自引:0,他引:21  
  相似文献   

8.
A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.  相似文献   

9.
Cancer cells frequently have disease-specific chromosome rearrangements. It is poorly understood why translocations between chromosomes recur at specific breakpoints in the genome. Here we provide evidence that higher-order spatial genome organization is a contributing factor in the formation of recurrent translocations. We show that MYC, BCL and immunoglobulin loci, which are recurrently translocated in various B-cell lymphomas, are preferentially positioned in close spatial proximity relative to each other in normal B cells. Loci in spatial proximity are non-randomly positioned towards the nuclear interior in normal B cells. This locus proximity is the consequence of higher-order genome structure rather than a property of individual genes. Our results suggest that the formation of specific translocations in human lymphomas, and perhaps other tissues, is determined in part by higher-order spatial organization of the genome.  相似文献   

10.
11.
Allele-specific DNA methylation (ASM) is a hallmark of imprinted genes, but ASM in the larger nonimprinted fraction of the genome is less well characterized. Using methylation-sensitive SNP analysis (MSNP), we surveyed the human genome at 50K and 250K resolution, identifying ASM as recurrent genotype call conversions from heterozygosity to homozygosity when genomic DNAs were predigested with the methylation-sensitive restriction enzyme HpaII. Using independent assays, we confirmed ASM at 16 SNP-tagged loci distributed across various chromosomes. At 12 of these loci (75%), the ASM tracked strongly with the sequence of adjacent SNPs. Further analysis showed allele-specific mRNA expression at two loci from this methylation-based screen--the vanin and CYP2A6-CYP2A7 gene clusters--both implicated in traits of medical importance. This recurrent phenomenon of sequence-dependent ASM has practical implications for mapping and interpreting associations of noncoding SNPs and haplotypes with human phenotypes.  相似文献   

12.
13.
14.
15.
Breakage-fusion-bridge cycles contribute to chromosome instability and generate large DNA palindromes that facilitate gene amplification in human cancers. The prevalence of large DNA palindromes in cancer is not known. Here, by using a new microarray-based approach called genome-wide analysis of palindrome formation, we show that palindromes occur frequently and are widespread in human cancers. Individual tumors seem to have a nonrandom distribution of palindromes in their genomes, and a subset of palindromic loci is associated with gene amplification. This indicates that the location of palindromes in the cancer genome can serve as a structural platform that supports subsequent gene amplification. Genome-wide analysis of palindrome formation is a new approach to identify structural chromosome aberrations associated with cancer.  相似文献   

16.
Pelger-Hu?t anomaly (PHA; OMIM *169400) is an autosomal dominant disorder characterized by abnormal nuclear shape and chromatin organization in blood granulocytes. Affected individuals show hypolobulated neutrophil nuclei with coarse chromatin. Presumed homozygous individuals have ovoid neutrophil nuclei, as well as varying degrees of developmental delay, epilepsy and skeletal abnormalities. Homozygous offspring in an extinct rabbit lineage showed severe chondrodystrophy, developmental anomalies and increased pre- and postnatal mortality. Here we show, by carrying out a genome-wide linkage scan, that PHA is linked to chromosome 1q41-43. We identified four splice-site, two frameshift and two nonsense mutations in LBR, encoding the lamin B receptor. The lamin B receptor (LBR), a member of the sterol reductase family, is evolutionarily conserved and integral to the inner nuclear membrane; it targets heterochromatin and lamins to the nuclear membrane. Lymphoblastoid cells from heterozygous individuals affected with PHA show reduced expression of the lamin B receptor, and cells homozygous with respect to PHA contain only trace amounts of it. We found that expression of the lamin B receptor affects neutrophil nuclear shape and chromatin distribution in a dose-dependent manner. Our findings have implications for understanding nuclear envelope-heterochromatin interactions, the pathogenesis of Pelger-like conditions in leukemia, infection and toxic drug reactions, and the evolution of neutrophil nuclear shape.  相似文献   

17.
18.
Chromatin profiling using targeted DNA adenine methyltransferase   总被引:17,自引:0,他引:17  
Chromatin is the highly complex structure consisting of DNA and hundreds of associated proteins. Most chromatin proteins exert their regulatory and structural functions by binding to specific chromosomal loci. Knowledge of the identity of these in vivo target loci is essential for the understanding of the functions and mechanisms of action of chromatin proteins. We report here large-scale mapping of in vivo binding sites of chromatin proteins, using a novel approach based on a combination of targeted DNA methylation and microarray technology. We show that three distinct chromatin proteins in Drosophila melanogaster cells each associate with specific sets of genes. HP1 binds predominantly to pericentric genes and transposable elements. GAGA factor associates with euchromatic genes that are enriched in (GA)n motifs. A Drosophila homolog of Saccharomyces cerevisiae Sir2p is associated with several active genes and is excluded from heterochromatin. High-resolution, genome-wide maps of target loci of chromatin proteins ('chromatin profiles') provide new insights into chromatin structure and gene regulation.  相似文献   

19.
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes that have been implicated in the regulation of gene expression, cell-cycle control and oncogenesis. MyoD is a muscle-specific regulator able to induce myogenesis in numerous cell types. To ascertain the requirement for chromatin remodeling enzymes in cellular differentiation processes, we examined MyoD-mediated induction of muscle differentiation in fibroblasts expressing dominant-negative versions of the human brahma-related gene-1 (BRG1) or human brahma (BRM), the ATPase subunits of two distinct SWI/SNF enzymes. We find that induction of the myogenic phenotype is completely abrogated in the presence of the mutant enzymes. We further demonstrate that failure to induce muscle-specific gene expression correlates with inhibition of chromatin remodeling in the promoter region of an endogenous muscle-specific gene. Our results demonstrate that SWI/SNF enzymes promote MyoD-mediated muscle differentiation and indicate that these enzymes function by altering chromatin structure in promoter regions of endogenous, differentiation-specific loci.  相似文献   

20.
Radiation hybrid map of the mouse genome.   总被引:13,自引:0,他引:13  
Radiation hybrid (RH) maps are a useful tool for genome analysis, providing a direct method for localizing genes and anchoring physical maps and genomic sequence along chromosomes. The construction of a comprehensive RH map for the human genome has resulted in gene maps reflecting the location of more than 30,000 human genes. Here we report the first comprehensive RH map of the mouse genome. The map contains 2,486 loci screened against an RH panel of 93 cell lines. Most loci (93%) are simple sequence length polymorphisms (SSLPs) taken from the mouse genetic map, thereby providing direct integration between these two key maps. We performed RH mapping by a new and efficient approach in which we replaced traditional gel- or hybridization-based assays by a homogeneous 5'-nuclease assays involving a single common probe for all genetic markers. The map provides essentially complete connectivity and coverage across the genome, and good resolution for ordering loci, with 1 centiRay (cR) corresponding to an average of approximately 100 kb. The RH map, together with an accompanying World-Wide Web server, makes it possible for any investigator to rapidly localize sequences in the mouse genome. Together with the previously constructed genetic map and a YAC-based physical map reported in a companion paper, the fundamental maps required for mouse genomics are now available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号