首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
The Sr3SiO5:Eu2 phosphor was synthesized by high temperature solid-state reaction. The emission spectrum of Sr3SiO5:Eu2 shows two bands centered at 487 and 575 nm, which well agree with the theoretic values of emission spectrum. The excitation spectrum for 575 nm emission center has several excitation bands at 365, 418, 458 and 473 nm. And the results show that the emission spectrum of Sr3SiO5:Eu2 is influenced by the Eu2 concentration. The relative emission spectra of the white-emitting InGaN-based YAG:Ce3 LED and Sr3SiO5:Eu2 LED were investigated. The results show that the color development of InGaN-based Sr3SiO5:Eu2 is better than that of InGaN-based YAG:Ce3 , and the CIE chromaticity of InGaN-based Sr3SiO5:Eu2 is (x=0.348, y=0.326).  相似文献   

2.
This paper briefly reviews the recent progress in alkaline earth silicate host luminescent materials with broad excitation band for phosphor-convered white LED. Among them, the Sr-rich binary phases (Sr, Ba, Ca, Mg)2SiO4:Eu^2+ and (Sr, Ba, Ca, Mg)3SiO5:Eu^2+ are excellent phosphors for blue LED chip white LED. They have very broad excitation bands and exhibit strong absorption of blue radiation in the range of 450-480 nm. And they exhibit green and yellow-orange emission under the InGaN blue LED chip radiation, respectively. The luminous efficiency of InGaN-based (Sr, Ba, Ca, Mg)=SiO4: Eu^2+ and (Sr, Ba, Ca, Mg)3SiO5:Eu^2+ is about 70-80 lm/W, about 95 %-105% that of the InGaN-based YAG :Ce, while the correlated color temperature is between 4600--11000 K. Trinary alkaline earth silicate host luminescent materials MO(M=Sr, Ca, Ba)-Mg(Zn)O-SiO2 show strong absorption of deep blue/near-ultraviolet radiation in the range of 370-440 nm. They can convert the deep blue/near-ultraviolet radiation into blue, green, and red emissions to generate white light. The realization of high-performance white-light LEDs by this approach presents excellent chromaticity and high color rendering index, and the application disadvantages caused by the mixture of various matrixes can be avoided. Moreover, the application prospects and the trends of research and development of alkaline earth silicate phosphors are also discussed.  相似文献   

3.
Photostimulated luminescence (PSL) is observed in BaBrCl: Eu^2+after X-ray irradiation at room temperature. It is suggested by PSL stimulation spectrum and difference absorption spectrum (DAS) that F centers are formed upon X-ray irradiation and both spectra show two bands which are centered at about 550 nm and 675 nm respectively. This enables the use of semiconductor light-emitting diodes (LED) instead of gas lasers for photostimulation. The PSL intensity increases linearly with X-ray irradiation dose increasing, and the conversion efficiency is 29% that for the standard commercial storage phosphor BaFBr:Eu from Fuji imaging plate.  相似文献   

4.
The Eu, Tb co-doped SiO2 matrix tricolor fluorescence system was prepared by sol-gel technique. Red emission at 618 nm, green emission at 543 nm and blue emission at 350-500 nm were observed in the PL spectra of the sample, indicating that Eu^3+, Eu^2+ and Tb^3+ ions coexisted in the matrix. In the co-doped sample, the blue emission of Eu^2+ was much stronger than that of the sample single doped with Eu, which implied that the electron transfer between Eu^3+ and Tb^3+ maybe happened in the SiO2 matrix. The influences of the annealing temperature and Tb concentration on the PL spectra of the samples were investigated. The optimal doped concentration of Tb was determined to be 0.2% and the optimal annealing temperature 850℃. Annealed at 600℃, Tb^3+ had a sensitizing effect on Eu^3+ in the SiO2 matrix, and the emission intensity of Eu^3+ in the Eu, Tb co-doped sample was more than four times that of the single doped sample, which could be attributed to the energy transfer from Tb^3+ to Eu^3+.  相似文献   

5.
A Eu, Dy co-doped SiO2 matrix, white emitting phosphor was prepared by the sol-gel technique. Strong red, green and blue emissions located at 618 nm, 573 nm and 400-550 nm were observed under UV laser excitation at room temperature. Such techniques as FT-IR and TGA-DSC were used to measure the microstructure of the luminescent material. The influence of the preparation techniques on the luminescence property of the Eu, Dy co-doped SiO2 matrix, such as anneal temperature, anneal time, dried atmosphere and the components of the matrix, was systematically studied, and the luminescence mechanism was interpreted. The red emission is the strongest when annealed at 750℃. However, blue emission appears when annealed at 700℃ and is the intensest at 900℃. For the samples dried in vacuum, Eu^3+ is more easily deoxidized to Eu^2+ at lower temperatures, because the samples dried in the air compared with that dried in vacuum need higher temperature to form network structures. Only the SA and SAB matrix annealed at 850℃ had blue emission in the four matrices (SA, SAB, SB, S) xerogel and the emission in the SAB matrix was stronger than that in the SA matrix. This may be due to the eutectic phase formed by the oxide boron, alkaline oxide and alumina in the SAB matrix, which constructs network structures and stabilizes the emission center and enhances the blue emission.  相似文献   

6.
Tb3+-activated Sr3Gd(BO3)3 green phosphors were prepared by conventional solid-state reaction. The vacuum ultraviolet (VUV) excitation, photoluminescence (PL) and decay properties of the phosphors in the visible range were investigated. The excitation spectrum showed a strong broad band from 160 to 200 nm with a maximum at 183 nm which was adjacent to the VUV excitation light source of 172 nm. Under excitation at 172 nm, the optimum co-doping concentration of Tb3+ was 10 mol%, and the emission intensity of Sr3Gd0.9(BO3)3:0.1Tb3+ was comparable to that of commercial Zn2SiO4:Mn2+. The strongest emission peak of Sr3Gd0.9(BO3)3:0.1Tb3+ was at 543 nm with chromaticity coordinates of (0.2626, 0.4922) and a lifetime of 2.32 ms. The optical properties of the green phosphor Sr3Gd(BO3)3:Tb3+ make it suitable for use in Hg-free fluorescent lamps and plasma display panels.  相似文献   

7.
The photoluminescence quenching behaviors of ^5D3-^7Fj and ^5D4-^7Fj (J = 0—6) transitions of Tb^3+ in YBO3:Tb under 130—290 nm excitation were systematically investigated. The results revealed that the quenching concentrations of both ^5D3-^7Fj and ^5D4-^7Fj transitions of Tb^3+ in YBO3:Tb were mainly dependent on excitation wavelength. Particularly, the quenching concentrations of ^5D4-^7Fj transitions of Tb^3+ under 130—290 nm excitation were correlated with excitation bands of YBO3:Tb. The quenching concentrations of ^5D3-^7Fj transitions remained at low concentration (2%) under 186—290 nm excitation and then increased gradually with energy of incoming excitation photon when excited at 130—186 nm. This dependence should be involved in their excitation mechanisms and quenching pathway in particular excitation region.[第一段]  相似文献   

8.
Eu^2 -aetivated strontium choloro-phosphate has been used for lamp phosphor traditionally with high efficiency. In this paper, the cathodoluminescent properties of Sr5(PO4)3Cl:Eu^2 have been investigated for application in field emission display. The influence of Ba^2 , Ca^2 impurities on the cathodoluminescent spectrum of Sr5(PO4)3Cl:Eu^2 has also been measured. When operate voltage varied from mid- to low-voltage, the relative brightness and saturation behavior of phosphor was observed at different current density.  相似文献   

9.
Tunable full color emissive Y32.94-xAl5O12: 0.06 Dy3+, xEu3+(YAG: 0.06 Dy, xEu) phosphors with emission peaks at 483 nm(blue), 582 nm(yellow) and 610 nm(red) were synthesized by a sol–gel method. The as-synthesized phosphors were characterized by X-ray powder diffraction(XRD), transmission electron microscopy(TEM), photoluminescence decay lifetimes, photoluminescence excitation and emission spectra. The results showed that photoluminescence intensity varied with excitation wavelength and the doping concentration of Eu3+. The co-doping with Eu3+ compensated the red emission component of the YAG: Dy3+ phosphor. The chromaticity coordinate of YAG: 0.06 Dy, 0.09 Eu phosphor(0.3263, 0.3334) was very close to that of the ideal white light(0.3333, 0.3333). Thus, the YAG: 0.06 Dy, 0.09 Eu phosphor can find potential application in simulating the sunlight artificially through fabricating white light emitters.  相似文献   

10.
We propose a kind of Yb2+-Yb3+-codoped glass, which is used as spectral converter layer to adjust AM1.5 solar spectrum for a better match with silicon bandgap. The energy-level rate equations and power transmission equations are established to analyze the down-conversional effect of the codoped glass on solar spectrum. The numerical results show that with proper doping concentration and thickness the glass layer may improve conversion efficiency by about 12 %. Moreover, we also apply the modified spectrum as excitation source of solar cell in a simulation platform, and reveal that there is about 15 % improvement in practical cells.  相似文献   

11.
The CaLaGa3O7:Eu3+ phosphor was prepared by a chemical co-precipitation method. Field emission scanning electron microscopy (FE-SEM), laser particle size analysis, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphor. The results revealed that the phosphor was composed of microspheres with a slight agglomerate phenomenon and was spherically shaped. The average grain size was about 1.0 μm. Eu3+ ions, as luminescent centers, substituted La3+ ions into the single crystal lattice of CaLaGa3O7 with the sites of Cs. Although the CL spectrum was greatly different from the PL spectrum, it had the strongest red emission corresponding to the 5D07F2 transition of Eu3+. Under the excitation of UV light (287 nm) and electron beams (1.0–7.0 kV), the chromaticity coordinates of the phosphor were found to be in the nearly red and orange light regions, respectively.  相似文献   

12.
The 0.1 mol% Er^3+ and 0-2 mol% Yb^3+ codoped Al2O3 powders were prepared by the sol-gel method, and the phase structure, including only two crystalline types of doped Al2O3 phase, γ-(Al,Er, Yb)2O3 and θ-(Al,Er, Yb)2O3, was detected at the sintering temperature of 1000℃. The visible and near infrared emissions properties depended strongly on the Yb^3+ codoping, and the corresponding maximal peak intensities centered at about 523, 545, 660 and 1533 nm were obtained respectively for the 0.1 mol% Er^3+ and 0.5 mol% Yb^3+ codoped Al2O3 powders, which were composed of θ-(Al,Er,Yb)2O3 and a small amount of γ-(Al,Er, Yb)2O3 phases. The two-photon absorption process was responsible for the visible up-conversion emissions, and the one-photon absorption process was involved in the near infrared emissions of the Er^3+-yb^3+ codoped Al2O3 powders.  相似文献   

13.
We explore nitric oxide (NO) effect on K^+in, channels in Arabidopsis guard cells. We observed NO inhibited K^+in, currents when Ca^2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N;tetraacetic acid) was not added in the pipette solution; K^+in currents were not sensitive to NO when cytosolic Ca^2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO elevates cytosolic Ca^2+ by activating plasma membrane Ca^2+ channels firstly, then inactivates K^+in, chartnels, resulting in stomatal opening suppressed subsequently.  相似文献   

14.
A new resistless etching method has been developed for Silicon wafers. This new method uses an aqueous solution consisting of hydrogen peroxide (H2O2) and hydrogen fluoride (HF) as the activating etchants. A 193 nm ArF excimer laser and a 266 nm fourth harmonic generation Nd: YAG laser were used as the photon sources. Results showed that pattern etching has been achieved without any photoresist film. In the case of the 193 nm laser, the optimal etching appeared at a 1.3 H2O2÷HF ratio, where an etch depth of 210 nm was achieved with a fluence of 29 mJ/cm2 and shot number of 10000. At the same conditions, the etch depth with H2O2 and HF solution was three times of that by using H2O and HF mixture. In the case of the 266 nm Nd: YAG laser, the optimal etching appeared at twice ratio of H2O2/HF, where the etch depth of 420 nm was achieved with a fluence of 12 mJ/cm2 and shot number of 30000. Results showed that the etch effect of the 266 nm Nd: YAG laser was more desirable than that of the 193 nm ArF excimer laser.  相似文献   

15.
Si4+-doped BaZr(BO3)2:Eu3+ phosphors are prepared by a conventional solid-state reaction. The influence of Si4+ addition on the charge transfer state of Eu3+-O2– and photoluminescence (PL) properties of BaZr(BO3)2:Eu3+ are discussed. Room temperature PL spectra indicated that efficient emission is obtained by Si doping. Increased values for the peak-peak ratio (PPR) of BaZr(BO3)2:Eu3+ at higher Si doping concentrations implied that the Eu3+ ion is located in a more asymmetric environment in BaZr0.8Si0.2(BO3)2:Eu3+ than in the undoped samples. The Judd-Ofelt parameters Ωλ (λ=2,4) were calculated from the PL data, giving results that were consistent with those from the PPR. The maximum radiative quantum efficiency was achieved at a Si doping concentration of 20 mol%.  相似文献   

16.
A single host white emitting phosphor, CaLaGa3O7:Dy3+, was synthesized by chemical co-precipitation. Field emission scanning electron microscopy, X-ray diffraction, laser particle size analysis, and photoluminescence and cathodoluminescence spectra were used to investigate the structural and optical properties of the phosphor. The phosphor particles were composed of microspheres with a slight tendency to agglomerate, and an average diameter was of about 1.0 μm. The Dy3+ ions acted as luminescent centers, and substituted La3+ ions in the single crystal lattice of CaLaGa3O7 where they were located in Cs sites. Under excitation with ultraviolet light and a low voltage electron beam, the CaLaGa3O7:Dy3+ phosphor exhibited the characteristic emission of Dy3+ (4F9/2-6H15/2 and 4F9/2-6H13/2 transitions) with intense yellow emission at about 573 nm. The chromaticity coordinates for the phosphor were in the white region. The relevant luminescence mechanisms of the phosphor are investigated. This phosphor may be applied in both field emission displays and white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号