首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The two main constituent water masses of the deep North Atlantic Ocean-North Atlantic Deep Water at the bottom and Labrador Sea Water at an intermediate level-are currently formed in the Nordic seas and the Labrador Sea, respectively. The rate of formation of these two water masses tightly governs the strength of the global ocean circulation and the associated heat transport across the North Atlantic Ocean. Numerical simulations have suggested a possible shut-down of Labrador Sea Water formation as a consequence of global warming. Here we use micropalaeontological data and stable isotope measurements in both planktonic and benthic foraminifera from deep Labrador Sea cores to investigate the density structure of the water column during the last interglacial period, which was thought to be about 2 degrees C warmer than present. Our results indicate that today's stratification between Labrador Sea Water and North Atlantic Deep Water never developed during the last interglacial period. Instead, a buoyant surface layer was present above a single water mass originating from the Nordic seas. Thus the present situation, with an active site of intermediate-water formation in the Labrador Sea, which settled some 7,000 years ago, has no analogue throughout the last climate cycle.  相似文献   

2.
The last interglacial period (127-110 kyr ago) has been considered to be an analogue to the present interglacial period, the Holocene, which may help us to understand present climate evolution. But whereas Holocene climate has been essentially stable in Europe, variability in climate during the last interglacial period has remained unresolved, because climate reconstructions from ice cores, continental records and marine sediment cores give conflicting results for this period. Here we present a high-resolution multi-proxy lacustrine record of climate change during the last interglacial period, based on oxygen isotopes in diatom silica, diatom assemblages and pollen-climate transfer functions from the Ribains maar in France. Contrary to a previous study, our data do not show a cold event interrupting the warm interglacial climate. Instead, we find an early temperature maximum with a transition to a colder climate about halfway through the sequence. The end of the interglacial period is clearly marked by an abrupt change in all proxy records. Our study confirms that in southwestern Europe the last interglacial period was a time of climatic stability and is therefore still likely to represent a useful analogue for the present climate.  相似文献   

3.
Rohling EJ  Pälike H 《Nature》2005,434(7036):975-979
The extent of climate variability during the current interglacial period, the Holocene, is still debated. Temperature records derived from central Greenland ice cores show one significant temperature anomaly between 8,200 and 8,100 years ago, which is often attributed to a meltwater outflow into the North Atlantic Ocean and a slowdown of North Atlantic Deep Water formation--this anomaly provides an opportunity to study such processes with relevance to present-day freshening of the North Atlantic. Anomalies in climate proxy records from locations around the globe are often correlated with this sharp event in Greenland. But the anomalies in many of these records span 400 to 600 years, start from about 8,600 years ago and form part of a repeating pattern within the Holocene. More sudden climate changes around 8,200 years ago appear superimposed on this longer-term cooling. The compounded nature of the signals implies that far-field climate anomalies around 8,200 years ago cannot be used in a straightforward manner to assess the impact of a slowdown of North Atlantic Deep Water formation, and the geographical extent of the rapid cooling event 8,200 years ago remains to be determined.  相似文献   

4.
The International Geosphere Biosphere Program (IGBP), which promotes better understanding of the living environment, was initiated in the early 1990s. IGBP and other programs have uncovered much evi-dence that the Earth system is complex and nonlinear, ex…  相似文献   

5.
Gupta AK  Anderson DM  Overpeck JT 《Nature》2003,421(6921):354-357
During the last ice age, the Indian Ocean southwest monsoon exhibited abrupt changes that were closely correlated with millennial-scale climate events in the North Atlantic region, suggesting a mechanistic link. In the Holocene epoch, which had a more stable climate, the amplitude of abrupt changes in North Atlantic climate was much smaller, and it has been unclear whether these changes are related to monsoon variability. Here we present a continuous record of centennial-scale monsoon variability throughout the Holocene from rapidly accumulating and minimally bioturbated sediments in the anoxic Arabian Sea. Our monsoon proxy record reveals several intervals of weak summer monsoon that coincide with cold periods documented in the North Atlantic region--including the most recent climate changes from the Medieval Warm Period to the Little Ice Age and then to the present. We therefore suggest that the link between North Atlantic climate and the Asian monsoon is a persistent aspect of global climate.  相似文献   

6.
Sea-level fluctuations during the last glacial cycle   总被引:35,自引:0,他引:35  
The last glacial cycle was characterized by substantial millennial-scale climate fluctuations, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. Highstands of sea level can be reconstructed from dated fossil coral reef terraces, and these data are complemented by a compilation of global sea-level estimates based on deep-sea oxygen isotope ratios at millennial-scale resolution or higher. Records based on oxygen isotopes, however, contain uncertainties in the range of +/-30 m, or +/-1 degrees C in deep sea temperature. Here we analyse oxygen isotope records from Red Sea sediment cores to reconstruct the history of water residence times in the Red Sea. We then use a hydraulic model of the water exchange between the Red Sea and the world ocean to derive the sill depth-and hence global sea level-over the past 470,000 years (470 kyr). Our reconstruction is accurate to within +/-12 m, and gives a centennial-scale resolution from 70 to 25 kyr before present. We find that sea-level changes of up to 35 m, at rates of up to 2 cm yr(-1), occurred, coincident with abrupt changes in climate.  相似文献   

7.
Variations in global atmospheric oscillations during the last millennium are simulated using the climate system model FGOALS_gl. The model was driven by reconstructions of both natural forcing (solar variability and volcanic aerosol) and anthropogenic forcing (greenhouse gases and sulfate aerosol). The model results are compared against proxy reconstruction data. The reconstructed North Atlantic Oscillation (NAO) was out of phase with the Pacific Decadal Oscillation (PDO) in the last millennium. During the ...  相似文献   

8.
Knorr G  Lohmann G 《Nature》2003,424(6948):532-536
During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.  相似文献   

9.
Turney CS  Kershaw AP  Clemens SC  Branch N  Moss PT  Fifield LK 《Nature》2004,428(6980):306-310
The El Ni?o/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial-interglacial cycle. ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time, but the proposals disagree on whether increased frequency of El Ni?o events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Ni?o events (summer precipitation declines in El Ni?o years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard-Oeschger events--millennial-scale warm events in the North Atlantic climate record--although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (approximately 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.  相似文献   

10.
Moore GW  Holdsworth G  Alverson K 《Nature》2002,420(6914):401-403
The relatively short length of most instrumental climate records restricts the study of climate variability, and it is therefore essential to extend the record into the past with the help of proxy data. Only since the late 1940s have atmospheric data been available that are sufficient in quality and spatial resolution to identify the dominant patterns of climate variability, such as the Pacific North America pattern and the Pacific Decadal Oscillation. Here we present a 301-year snow accumulation record from an ice core at a height of 5,340 m above sea level-from Mount Logan, in northwestern North America. This record shows features that are closely linked with the Pacific North America pattern for the period of instrumental data availability. Our record extends back in time to cover the period from the closing stages of the Little Ice Age to the warmest decade in the past millennium. We find a positive, accelerating trend in snow accumulation after the middle of the nineteenth century. This trend is paralleled by a warming over northwestern North America which has been associated with secular changes in both the Pacific North America pattern and the Pacific Decadal Oscillation.  相似文献   

11.
Variations of winter Arctic sea ice bordering on the North Atlantic are closely related to climate variations in the same region. When winter North Atlantic Oscillation (NAO) index is positive (negative) anomaly phase, Icelandic Low is obviously deepened and shifts northwards (southwards). Simultaneously, the Subtropical High over the North Atlantic is also intensified, and moves northwards (southwards). Those anomalies strengthen (weaken) westerly between Icelandic Low and the Subtropical High, and further result in positive (negative) sea surface temperature (SST) anomalies in the mid-latitude of the North Atlantic, and increase (decrease) the warm water transportation from the mid-latitude to the Barents Sea, which causes positive (negative) mixed-layer water temperature anomalies in the south part of the Barents Sea. Moreover, the distribution of anomaly air temperature clearly demonstrates warming (cooling) in northern Europe and the subarctic regions (including the Barents Sea) and cooling (warming) in Baffin Bay/Davis Strait. Both of distributions of SST and air temperature anomalies directly result in sea ice decrease (increase) in the Barents/Kara Seas, and sea ice increase (decrease) in Baffin Bay/Davis Strait. :  相似文献   

12.
Moreno PI  Jacobson GL  Lowell TV  Denton GH 《Nature》2001,409(6822):804-808
Understanding the relative timings of climate events in the Northern and Southern hemispheres is a prerequisite for determining the causes of abrupt climate changes. But climate records from the Patagonian Andes and New Zealand for the period of transition from glacial to interglacial conditions--about 14.6-10 kyr before present, as determined by radiocarbon dating--show varying degrees of correlation with similar records from the Northern Hemisphere. It is necessary to resolve these apparent discrepancies in order to be able to assess the relative roles of Northern Hemisphere ice sheets and oceanic, atmospheric and astronomical influences in initiating climate change in the late-glacial period. Here we report pollen records from three sites in the Lake District of southern Chile (41 degrees S) from which we infer conditions similar to modern climate between about 13 and 12.2 14C kyr before present (BP), followed by cooling events at about 12.2 and 11.4 14C kyr BP, and then by a warming at about 9.8 14C kyr BP. These events were nearly synchronous with important palaeoclimate changes recorded in the North Atlantic region, supporting the idea that interhemispheric linkage through the atmosphere was the primary control on climate during the last deglaciation. In other regions of the Southern Hemisphere, where climate events are not in phase with those in the Northern Hemisphere, local oceanic influences may have counteracted the effects that propagated through the atmosphere.  相似文献   

13.
The overshoot phenomenon of the Atlantic thermohaline circulation (THC) is a transient climate response to meltwater forcing and could induce intense climate change by increasing the magnitudes of Atlantic THC changes at the end of meltwater discharges. This phenomenon was formally presented with the successfully simulated Bolling-Allerod (BA) event in the first transient simulation of the last deglaciation with fully coupled model NCAR-CCSM3 (TraCE-21K). Currently, not all proxy records of Atlantic THC support the occurrence of the THC overshoot at BA. Commonly used THC proxy from Bermuda Rise (GGC5) does not exhibit THC overshoot at BA but other proxies such as TTR-451 at Eirik Drift do. How to interpret this regional discrepancy of proxy records is a key question for the validation of the Atlantic THC overshoot at BA. Here, we show that the vigor of deep circulation varies regionally during the Atlantic THC overshoot at BA in TraCE-21K simulation, and this regional discrepancy in the simulation is consistent with that in the marine sediment records in North Atlantic. The consistent model-proxy evidence supports the occurrence of Atlantic THC overshoot at BA.  相似文献   

14.
Brandt P  Funk A  Hormann V  Dengler M  Greatbatch RJ  Toole JM 《Nature》2011,473(7348):497-500
Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean-atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Ni?o/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean-atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5?yr and amplitudes of more than 10?cm?s(-1) are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6?cm?s(-1) and 0.4?°C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.  相似文献   

15.
Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 degrees C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.  相似文献   

16.
Schmidt MW  Vautravers MJ  Spero HJ 《Nature》2006,443(7111):561-564
Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.  相似文献   

17.
Many palaeoclimate records from the North Atlantic region show a pattern of rapid climate oscillations, the so-called Dansgaard-Oeschger events, with a quasi-periodicity of approximately 1,470 years for the late glacial period. Various hypotheses have been suggested to explain these rapid temperature shifts, including internal oscillations in the climate system and external forcing, possibly from the Sun. But whereas pronounced solar cycles of approximately 87 and approximately 210 years are well known, a approximately 1,470-year solar cycle has not been detected. Here we show that an intermediate-complexity climate model with glacial climate conditions simulates rapid climate shifts similar to the Dansgaard-Oeschger events with a spacing of 1,470 years when forced by periodic freshwater input into the North Atlantic Ocean in cycles of approximately 87 and approximately 210 years. We attribute the robust 1,470-year response time to the superposition of the two shorter cycles, together with strongly nonlinear dynamics and the long characteristic timescale of the thermohaline circulation. For Holocene conditions, similar events do not occur. We conclude that the glacial 1,470-year climate cycles could have been triggered by solar forcing despite the absence of a 1,470-year solar cycle.  相似文献   

18.
Investigating the processes that led to the end of the last interglacial period is relevant for understanding how our ongoing interglacial will end, which has been a matter of much debate (see, for example, refs 1, 2). A recent ice core from Greenland demonstrates climate cooling from 122,000 years ago driven by orbitally controlled insolation, with glacial inception at 118,000 years ago. Here we present an annually resolved, layer-counted record of varve thickness, quartz grain size and pollen assemblages from a maar lake in the Eifel (Germany), which documents a late Eemian aridity pulse lasting 468 years with dust storms, aridity, bushfire and a decline of thermophilous trees at the time of glacial inception. We interpret the decrease in both precipitation and temperature as an indication of a close link of this extreme climate event to a sudden southward shift of the position of the North Atlantic drift, the ocean current that brings warm surface waters to the northern European region. The late Eemian aridity pulse occurred at a 65 degrees N July insolation of 416 W m(-2), close to today's value of 428 W m(-2) (ref. 9), and may therefore be relevant for the interpretation of present-day climate variability.  相似文献   

19.
This paper summarizes the work from the INQUA 1997 Project "Response of soil formation to short-warm-episodes of Asian summer monsoon" and its seeded related international and domestic grants. It reviews the effects of the millennial monsoonal changes on the loess- paleosols of the Chinese Loess and Tibetan Plateaus. High-resolution proxy records of pedogenesis and monsoons demonstrate that both Asian winter and summer monsoons were unstable and synchronously and inversely coupled during the last glaciation. During that time rapid episodic cycles of cold surges and warm enhancements spanned only ca. 1-2 ka in high- frequency domain. Sub-Milankovitch cycles (6-8 ka) of progressive cooling or weakening in low- frequency domain generally resembled the pattern of the North Atlantic climatic change. However, during the last interglacial, Asian winter and summer monsoons seemed to vary independently, the former being stable and the later unstable. Soil formation seems to occur in surprisingly fast response to the summer monsoon warm enhancements, resulting in weakly or moderately developed paleosol sequences. North Atlantic and polar cold air surges though the westerlies and other paths, and the north-south swing of the westerlies beside the Tibetan Plateau, may be the alternative mechanisms for the rapid monsoonal changes during the last glacial. But in the last interglacial, the summer monsoons worked largely independently.  相似文献   

20.
Wang  LiBo  Yang  ZuoSheng  ZHang  RongPing  Fan  DeJiang  Zhao  MeiXun  Hu  BangQi 《科学通报(英文版)》2011,56(15):1588-1595
Sea surface temperature (SST) records in the South Yellow Sea during the last 6200 years are reconstructed by the unsaturation index of long-chain alkenones (K 37 U ’) in sediment core ZY2 from the central mud area.The SST records varied between 14.1 and 16.5°C (15.6°C on average),with 3 phases:(1) A high SST phase at 6.2-5.9 cal ka BP;(2) A low and intensely fluctuating SST phase at 5.9-2.3 cal ka BP;and (3) A high and stable SST phase since 2.3 cal ka BP.Variation of the SST records is similar to intensity of the Kuroshio Current (KC),and corresponds well in time to global cold climate events.However,the amplitude of the SST response to cooling events was significantly different in different phases.The SST response to global cooling event was weak while the KC was strong;and the SST response was strong while the KC was weak.The difference in amplitude of the SST response is possibly caused by the modulation effect of the Yellow Sea Warm Current which acts as a shelf branch of the KC and a compensating current induced by the East Asia winter monsoon.The warm waters brought by the Yellow Sea Warm Current cushion the SST decrease induced by climate cooling,and both the Kuroshio and East Asian winter monsoon play important roles in the modulation mechanism.The SST records display a periodicity of 1482 years.The same period was found in the KC records,indicating that variation of the SST records in the central South Yellow Sea is strongly affected by KC intensity.The same period was also found in Greenland ice cores and North Atlantic and Arabian Sea sediment cores,showing a regional response of marine environmental variability in the East China Seas to that in the global oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号