首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
We have constructed a new generation yeast artificial chromosome (YAC) library from female C57BL/10 mice in a recombination-deficient strain of Saccharomyces cerevisiae carrying a mutation in the RAD52 gene. The YAC library contains 41,568 clones with an average insert size of 240 kilobases, representing a greater than threefold coverage of the mouse genome. Currently, the library can be screened by polymerase chain reaction and we have isolated positive clones at a number of loci in the mouse genome. This rad52 library should enable a long-term assessment of the effect of one of the yeast recombination pathway genes on both, genome-wide YAC clone stability and the frequency of chimaeric clones.  相似文献   

3.
A YAC-based physical map of the mouse genome.   总被引:9,自引:0,他引:9  
A physical map of the mouse genome is an essential tool for both positional cloning and genomic sequencing in this key model system for biomedical research. Indeed, the construction of a mouse physical map with markers spaced at an average interval of 300 kb is one of the stated goals of the Human Genome Project. Here we report the results of a project at the Whitehead Institute/MIT Center for Genome Research to construct such a physical map of the mouse. We built the map by screening sequenced-tagged sites (STSs) against a large-insert yeast artificial chromosome (YAC) library and then integrating the STS-content information with a dense genetic map. The integrated map shows the location of 9,787 loci, providing landmarks with an average spacing of approximately 300 kb and affording YAC coverage of approximately 92% of the mouse genome. We also report the results of a project at the MRC UK Mouse Genome Centre targeted at chromosome X. The project produced a YAC-based map containing 619 loci (with 121 loci in common with the Whitehead map and 498 additional loci), providing especially dense coverage of this sex chromosome. The YAC-based physical map directly facilitates positional cloning of mouse mutations by providing ready access to most of the genome. More generally, use of this map in addition to a newly constructed radiation hybrid (RH) map provides a comprehensive framework for mouse genomic studies.  相似文献   

4.
A database containing mapped partial cDNA sequences from Caenorhabditis elegans will provide a ready starting point for identifying nematode homologues of important human genes and determining their functions in C. elegans. A total of 720 expressed sequence tags (ESTs) have been generated from 585 clones randomly selected from a mixed-stage C. elegans cDNA library. Comparison of these ESTs with sequence databases identified 422 new C. elegans genes, of which 317 are not similar to any sequences in the database. Twenty-six new genes have been mapped by YAC clone hybridization. Members of several gene families, including cuticle collagens, GTP-binding proteins, and RNA helicases were discovered. Many of the new genes are similar to known or potential human disease genes, including CFTR and the LDL receptor.  相似文献   

5.
Telomere-associated chromosome fragmentation (TACF) is a new approach for chromosome mapping based on the non-targeted introduction of cloned telomeres into mammalian cells. TACF has been used to generate a panel of somatic cell hybrids with nested terminal deletions of the long arm of the human X chromosome, extending from Xq26 to the centromere. This panel has been characterized using a series of X chromosome loci. Recovery of the end clones by plasmid rescue produces a telomeric marker for each cell line and partial sequencing will allow the generation of sequence tagged sites (STSs). TACF provides a powerful and widely applicable method for genome analysis, a general way of manipulating mammalian chromosomes and a first step towards constructing artificial mammalian chromosomes.  相似文献   

6.
7.
The genome of the fission yeast, Schizosaccharomyces pombe, consists of some 14 million base pairs of DNA contained in three chromosomes. On account of its excellent genetics we used it as a test system for a strategy designed to map mammalian chromosomes and genomes. Data obtained from hybridization fingerprinting established an ordered library of 1,248 yeast artificial chromosome clones with an average size of 535 kilobases. The clones fall into three contigs completely representing the three chromosomes of the organism. This work provides a high resolution physical and clone map of the genome, which has been related to available genetic and physical map information.  相似文献   

8.
The Huntington's disease (HD) gene has been localized by recombination events to a region covering 2.2 megabases (Mb) DNA within chromosome 4p16.3. We have screened three yeast artificial chromosome (YAC) libraries in order to isolate and characterize 44 YAC clones mapping to this region. Approximately 50% of the YACs were chimaeric. Unstable YACs were identified across the whole region, but were particularly prevalent around the D4S183 and D4S43 loci. The YACs have been assembled into a contig extending from D4S126 to D4S98 covering roughly 2 Mb DNA, except for a gap of about 250 kilobases (kb). The establishment of a YAC contig which spans the region most likely to contain the HD mutation is an essential step in the isolation of the HD gene.  相似文献   

9.
We constructed a tiling resolution array consisting of 32,433 overlapping BAC clones covering the entire human genome. This increases our ability to identify genetic alterations and their boundaries throughout the genome in a single comparative genomic hybridization (CGH) experiment. At this tiling resolution, we identified minute DNA alterations not previously reported. These alterations include microamplifications and deletions containing oncogenes, tumor-suppressor genes and new genes that may be associated with multiple tumor types. Our findings show the need to move beyond conventional marker-based genome comparison approaches, that rely on inference of continuity between interval markers. Our submegabase resolution tiling set for array CGH (SMRT array) allows comprehensive assessment of genomic integrity and thereby the identification of new genes associated with disease.  相似文献   

10.
Large scale sequencing of cDNAs provides a complementary approach to structural analysis of the human genome by generating expressed sequence tags (ESTs). We have initiated the large-scale sequencing of a 3'-directed cDNA library from the human liver cell line HepG2, that is a non-biased representation of the mRNA population. 982 random cDNA clones were sequenced yielding more than 270 kilobases. A significant portion of the identified genes encoded secretable proteins and components for protein-synthesis. The abundance of cDNA species varied from 2.2% to less than 0.004%. Fifty two percent of the mRNA were abundant species consisting of 173 genes and the rest were non-abundant, consisting of about 6,600 genes.  相似文献   

11.
A complete BAC-based physical map of the Arabidopsis thaliana genome.   总被引:11,自引:0,他引:11  
Arabidopsis thaliana is a small flowering plant that serves as the major model system in plant molecular genetics. The efforts of many scientists have produced genetic maps that provide extensive coverage of the genome (http://genome-www. stanford.edu/Arabidopsis/maps.html). Recently, detailed YAC, BAC, P1 and cosmid-based physical maps (that is, representations of genomic regions as sets of overlapping clones of corresponding libraries) have been established that extend over wide genomic areas ranging from several hundreds of kilobases to entire chromosomes. These maps provide an entry to gain deeper insight into the A. thaliana genome structure. A. thaliana has been chosen as the subject of the first large-scale project intended to determine the full genome sequence of a plant. This sequencing project, together with the increasing interest in map-based gene cloning, has highlighted the requirement for a complete and accurate physical map of this plant species. To supply the scientific community with a high-quality resource, we present here a complete physical map of A. thaliana using essentially the IGF BAC library. The map consists of 27 contigs that cover the entire genome, except for the presumptive centromeric regions, nucleolar organization regions (NOR) and telomeric areas. This is the first reported map of a complex organism based entirely on BAC clones and it represents the most homogeneous and complete physical map established to date for any plant genome. Furthermore, the analysis performed here serves as a model for an efficient physical mapping procedure using BAC clones that can be applied to other complex genomes.  相似文献   

12.
Many quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, but few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. Transgenic mice have been successfully used to analyse well-characterized genes suspected of contributing to quantitative traits. Although this approach is powerful for examining one gene at a time, it can be impractical for surveying the large genomic intervals containing many genes that are typically associated with QTLs. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q3 (refs 6,7), we characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a 1-Mb interval of chromosome 5q31 containing 6 cytokine genes and 17 partially characterized genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180-kb region containing 5 genes, including those encoding human interleukin 4 (IL4) and interleukin 13 (IL13 ), which induce IgE class switching in B cells. Further analysis of these mice and mice transgenic for mouse Il4 and Il13 demonstrated that moderate changes in Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled us to identify genes that influence the QTL phenotype in vivo.  相似文献   

13.
Alu elements are found exclusively in primate species and comprise over 10% of the human genome. To better define the mechanisms responsible for Alu replication, we introduced a human Alu element into mouse cells. We report that Alu retrotransposition can be induced in mouse cells by exposure to the topoisomerase II inhibitor etoposide and is mediated in trans by endogenous mouse long interspersed elements (LINEs).  相似文献   

14.
Focal dermal hypoplasia (FDH) is an X-linked dominant multisystem birth defect affecting tissues of ectodermal and mesodermal origin. Using a stepwise approach of (i) genetic mapping of FDH, (ii) high-resolution comparative genome hybridization to seek deletions in candidate chromosome areas and (iii) point mutation analysis in candidate genes, we identified PORCN, encoding a putative O-acyltransferase and potentially crucial for cellular export of Wnt signaling proteins, as the gene mutated in FDH. The findings implicate FDH as a developmental disorder caused by a deficiency in PORCN.  相似文献   

15.
Breakage-fusion-bridge cycles contribute to chromosome instability and generate large DNA palindromes that facilitate gene amplification in human cancers. The prevalence of large DNA palindromes in cancer is not known. Here, by using a new microarray-based approach called genome-wide analysis of palindrome formation, we show that palindromes occur frequently and are widespread in human cancers. Individual tumors seem to have a nonrandom distribution of palindromes in their genomes, and a subset of palindromic loci is associated with gene amplification. This indicates that the location of palindromes in the cancer genome can serve as a structural platform that supports subsequent gene amplification. Genome-wide analysis of palindrome formation is a new approach to identify structural chromosome aberrations associated with cancer.  相似文献   

16.
A total of 116,118 basepairs (bp) derived from three cosmids spanning the ERCC1 locus of human chromosome 19q13.3 have been sequenced with automated fluorescence-based sequencers and analysed by polymerase chain reaction amplification and computer methods. The assembled sequence forms two contigs totalling 105,831 bp, which contain a human fosB proto-oncogene, a gene encoding a protein phosphatase, two genes of unknown function and the previously-characterized ERCC1 DNA repair gene. This light band region has a high average density of 1.4 Alu repeats per kilobase. Human chromosome light bands could therefore contain up to 75,000 genes and 1.5 million Alu repeats.  相似文献   

17.
Sequence variation in the human angiotensin converting enzyme.   总被引:32,自引:0,他引:32  
Angiotensin converting enzyme (encoded by the gene DCP1, also known as ACE) catalyses the conversion of angiotensin I to the physiologically active peptide angiotensin II, which controls fluid-electrolyte balance and systemic blood pressure. Because of its key function in the renin-angiotensin system, many association studies have been performed with DCP1. Nearly all studies have associated the presence (insertion, I) or absence (deletion, D) of a 287-bp Alu repeat element in intron 16 with the levels of circulating enzyme or cardiovascular pathophysiologies. Many epidemiological studies suggest that the DCP1*D allele confers increased susceptibility to cardiovascular disease; however, other reports have found no such association or even a beneficial effect. We present here the complete genomic sequence of DCP1 from 11 individuals, representing the longest contiguous scan (24 kb) for sequence variation in human DNA. We identified 78 varying sites in 22 chromosomes that resolved into 13 distinct haplotypes. Of the variant sites, 17 were in absolute linkage disequilibrium with the commonly typed Alu insertion/deletion polymorphism, producing two distinct and distantly related clades. We also identified a major subdivision in the Alu deletion clade that enables further analysis of the traits associated with this gene. The diversity uncovered in DCP1 is comparable to that described for other regions in the human genome. The highly correlated structure in DCP1 raises important issues for the determination of functional DNA variants within genes and genetic studies in humans based on marker association.  相似文献   

18.
19.
The mammalian Y chromosome has unique characteristics compared with the autosomes or X chromosomes. Here we report the finished sequence of the chimpanzee Y chromosome (PTRY), including 271 kb of the Y-specific pseudoautosomal region 1 and 12.7 Mb of the male-specific region of the Y chromosome. Greater sequence divergence between the human Y chromosome (HSAY) and PTRY (1.78%) than between their respective whole genomes (1.23%) confirmed the accelerated evolutionary rate of the Y chromosome. Each of the 19 PTRY protein-coding genes analyzed had at least one nonsynonymous substitution, and 11 genes had higher nonsynonymous substitution rates than synonymous ones, suggesting relaxation of selective constraint, positive selection or both. We also identified lineage-specific changes, including deletion of a 200-kb fragment from the pericentromeric region of HSAY, expansion of young Alu families in HSAY and accumulation of young L1 elements and long terminal repeat retrotransposons in PTRY. Reconstruction of the common ancestral Y chromosome reflects the dynamic changes in our genomes in the 5-6 million years since speciation.  相似文献   

20.
Single-nucleotide polymorphisms (SNPs) have been the focus of much attention in human genetics because they are extremely abundant and well-suited for automated large-scale genotyping. Human SNPs, however, are less informative than other types of genetic markers (such as simple-sequence length polymorphisms or microsatellites) and thus more loci are required for mapping traits. SNPs offer similar advantages for experimental genetic organisms such as the mouse, but they entail no loss of informativeness because bi-allelic markers are fully informative in analysing crosses between inbred strains. Here we report a large-scale analysis of SNPs in the mouse genome. We characterized the rate of nucleotide polymorphism in eight mouse strains and identified a collection of 2,848 SNPs located in 1,755 sequence-tagged sites (STSs) using high-density oligonucleotide arrays. Three-quarters of these SNPs have been mapped on the mouse genome, providing a first-generation SNP map of the mouse. We have also developed a multiplex genotyping procedure by which a genome scan can be performed with only six genotyping reactions per animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号