首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphology and composition of illite from the Luochuan loess section were investigated by TEM. The results show that most of the illite grains are characterized by rounded shapes and chemical compositions are closely similar to those of anchizonal illites. The enrichment of illites in paleosol over loess was mainly caused by the weak winter monsoon during the interglacial periods, and was not related to thein situ pedogenesis. Illite can serve as an indicator for tracing eolian dust from Loess Plateau in pelagic and lacustrine sediments.  相似文献   

2.
YVO4:Er3+, Yb3+ with varying Yb3+ concentrations were prepared by a precipitation method. The results of X-ray diffraction (XRD) show that all the samples have a tetragonal zircon structure; the calculated average crystallite sizes are in the range of 14–22 nm. The lattice constants and cell volume of the samples decrease slightly with the increase in Yb3+ concentration. The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation. The strong green emission is observed, which is attributed to the 2H11/24I15/2 and 4S3/24I15/2 transitions of Er3+, and the red emission peaks in 650–675 nm can be ignored. The emission intensity for the sample depends on the Yb3+ concentration. These results reveal that the upconversion processes of YVO4:Er3+, Yb3+ are related to the structure and the doping Yb3+ concentration of the sample.  相似文献   

3.
We have prepared a series of(ZnO)1-x(Fe2O3)x≤0.10bulk samples with various concentrations of Fe dopant by ball milling and investigated their structural, compositional, optical and magnetic properties by means of X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS),Raman spectrometer and vibrating sample magnetometer(VSM), respectively. Information about different impurity phases was obtained through Rietveld refinements of XRD data analysis. XPS results showed different valence states(Fe2+ tand Fe3+) supported by shaking satellite peaks in samples. With increasing Fe doping percentage, the crystal quality deteriorated and a shift of E2 low band(characteristic of ZnO) has been observed in Raman spectra. Energy band gap estimated from reflectance UV–vis spectroscopy showed shift for all bulk samples. The magnetic behavior was examined using a vibrating sample magnetometer(VSM), indicating ferromagnetic behavior at room temperature(300 K). The effective magnetic moment per Fe atom decreases with increase in doping percentage which indicates that ferromagnetic behavior arises from the substitution of Fe ions in the ZnO lattice.  相似文献   

4.
To investigate the optimum calcination temperature and cementitious properties of gangue, the microstructure of clay-containing gangue calcined at different temperatures was analyzed by X-ray diffraction (XRD), infrared spectroscopy (IR), and magnetic angle spinning nuclear magnetic resonance (MAS NMR). The results show that the structure of kaolinite in the gangue sample calcined at 500℃ is destroyed. The XRD spectra show the disappearance of illite at about 800℃ and the formation ofmullite at about 1000℃. With the increase in calcination temperature, octahedral (6-coordinated) aluminum is transformed to tetrahedral (4-coordinated) aluminum gradually. For the gangue sample calcined at 700℃, the 29Si MAS NMR sharp peak of Q4 (framework silicate-quartz) is left. Compared with kaolinite in gangue, the thermal transformed temperature of pure kaolinite is lagged. On the basis of the microstructure and cementitious properties of calcined gangue, the results can be concluded, in order to obtain metakaolinite, the optimum calcination temperature of this gangue is about 500℃, and the optimum temperature is about 700℃ for activated SiO2 and Al2O3.  相似文献   

5.
A novel red long-lasting phosphor, (Y1−x Gd x )2O3:Eu3+, Sm3+, Si4+, Mg2+, was synthesized by the co-precipitation method using oxalate precipitation as the precursor. X-ray diffraction (XRD), scanning electronic microscopy (SEM), integrated thermal analyzer (TG), and photoluminescence spectra (PL) as well as the ST-900PM weak light photometer were used to study the synthesis conditions, morphology, luminescence properties, and the decay time of the phosphor. The XRD results show that the products synthesized at 1400°C for 4 h have good crystallization without any detectable impurity phases. Based on the PL spectra, the optimal conditions are as the following. The molar ratios of Y3+ to Gd3+ and Eu3+ to Sm3+ are 2:8 and 3:1, respectively, and the contents of Mg2+ and SiO2 are 5mol% and 3mol%, respectively. The decay time monitored by the ST-900PM weak light photometer is 7200 s, increasing 44% and 100%, respectively, compared with the Eu3+ and Sm3+ single-doped phosphors. The results indicate that the energy transfer is from Sm3+ to Eu3+ ion, and Sm3+ is a good sensitizer to Eu3+.  相似文献   

6.
《科学通报(英文版)》1999,44(4):372-372
Morphology and composition of illite from the Luochuan loess section were investigated by TEM. The results show that most of the illite grains are characterized by rounded shapes and chemical compositions are closely similar to those of anchizonal illites. The enrichment of illites in paleosol over loess was mainly caused by the weak winter monsoon during the interglacial periods, and was not related to the in situ pedogenesis. Illite can serve as an indicator for tracing eolian dust from Loess Plateau in pelagic and lacustrine sediments.  相似文献   

7.
Down-conversion properties of Eu3+ doped M2Y2Si2O9 (M = Ba, Ca, Mg, Sr) phosphors have been investigated in detail. These phosphors were synthesized via the simple, fast and cost-effective sol-gel technique at a temperature of 950 °C. Color coordinates and emission color can be altered by the varying concentration of dopant ion in Ca2Y2Si2O9 phosphor. Optimum luminescence intensity was obtained when doping 0.03 mol of Eu3+ ion. Using the excitation wavelength of 395 nm, these silicates showed strong red color, pure and sharp spectral peaks in visible region due to 5D07F1-3 transitions of Eu3+ present in the lattice. Effect of reaction temperature on luminescence was also analyzed for these phosphors. The sharp peaks in the X-ray diffraction pattern indicated the high crystallinity of prepared phosphors. Ca2Y2Si2O9 has shown an orthorhombic crystal structure. The FTIR results confirmed the metal-oxygen vibrational modes available in the range of 400–1600 cm?1. Transmission electron microscopy images have revealed that the variation of alkaline earth metal provided a very different crystal structure. Excellent down conversion response of these phosphor materials can provide a great significance in the application of the coming solar devices.  相似文献   

8.
The volatile organic compounds (VOCs) emitted from the sources of industries are a kind of main pol-lutants to the atmosphere. The Environmental Protec-tion Agency (EPA) of the United States lists more than 300 VOC pollutants. 70% of the toxic compounds t…  相似文献   

9.
The effect of Ca2+ on CO2 corrosion to X65 pipeline steel was investigated in the simulated stratum water of an oil field containing different concentrations of Ca2+. It is found that Ca2+ can enhance the corrosion rate, especially in the Ca2+ concentration from 256 to 512 mg/L, which can be attributed to the growing grain size and loosing structure of corrosion scales with increasing Ca2+ concentration. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) investigations reveal that a complex carbonate (Fe, Ca)CO3 forms at high Ca2+ concentration due to the gradual replacement of Fe2+ in FeCO3 by Ca2+.  相似文献   

10.
In this study,TiO2@MgO core-shell film was obtained by using a simple chemical bath deposition method to coat a thin MgO film around TiO2 nanoparticles. The core-shell configuration was characterized by X-ray diffractometer (XRD),scanning elec-tron microscopy (SEM),energy dispersive X-ray spectroscopy (EDX),and high-resolution transmission electron microscopy (HRTEM). Lattice fringes were observed for the TiO2 particles,and the MgO shell showed an amorphous structure,revealing a clear distinction between the core and shell materials. Applying the core-shell film as photoanode to the dye-sensitized solar cells (DSSCs),it shows a superior performance compared to the pure TiO2 electrode. Under the illumination of simulated sunlight (75 mW-cm-2),the short circuit photocurrent (Jsc),the open circuit photovoltage (Voc),and the fill factor (fF) are 8.80 mA-cm-2,646 mV,and 0.69,respectively,and the conversion efficiency (η) in-creased by 21.8% (from 4.32% to 5.26%) when dipping for opti-mum condition.  相似文献   

11.
Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their crystal structure and luminescent properties were investigated by X-ray diffraction (XRD) and fluorescent spectrofluorometer. XRD patterns demonstrate that a well-crystalline structure forms in the phosphors when they are treated by calcination at 1200°C for 4 h, and the excitation spectra exhibit good absorption in the range between 350 and 420 nm. Under the irradiation of 405 nm near-ultraviolet (NUV) light, the spectra of the phosphors show a main emission peak at 601 nm attributed to the 4G5/2??6H7/2 transition of Sm3+ ions, and its intensity is greatly influenced by the concentrations of Sm3+ and Na2CO3. When the concentrations of Sm3+ ions and Na2CO3 are 2mol% and 6mol%, respectively, the optimal emission intensity can be obtained. From strong absorption in the near ultraviolet zone, the Na0.06Sm0.02Ca1.92SiO4 phosphor is a promising red-emitting phosphor for white light emitting diodes (W-LEDs).  相似文献   

12.
Using Mn(OH)2 as precursor, LiOH as lithiating agent and (NH4)2S2O8 as oxidant, layeredo-LiMnO2 was obtained by a novel method—in situ oxidation-intercalation under mild conditions (80 °C). The product was characterized by XRD, ICP, TEM and7Li-NMR. The results reveal that orthorhombic LiMnO2 with high purity and good crystallinity can be obtained by this method. During electrochemical tests, a LiMnO2/Li cell shows an initial reversible capacity of 208 mAh · g−1 and a reversible capacity of 180 mAh · g−1 after 30 cycles at room temperature.  相似文献   

13.
采用高温固相法合成了红色长余辉材料Y2O2S:Eu3+,Zn2+,Ti4+,实现了余辉发光中心和缺陷中心之间的能量传递。通过XRD、荧光发射和激发光谱、余辉发射光谱与衰减曲线、色坐标和热释光谱测试手段对Y2O2S:Eu3+,Zn2+、Y2O2S:Eu3+,Ti4+、Y2O2S:Eu3+,Zn2+,Ti4+和Y2O2S:Eu3+,Mg2+,Ti4+进行了结构与性能的表征,发现其荧光发射与余辉发射基本一致,红色余辉发光主峰位于625 nm附近,来源于Eu3+的5D0→7F2跃迁发射。相比而言,Y2O2S:Eu3+,Zn2+,Ti4+余辉发光性能最好,可持续1.5 h左右。  相似文献   

14.
Powders of spinel LiLaxMn2—xO4 were successfully synthesized by the ultrasonic-assisted sol-gel (UASG) method. The structure and properties of LiLaxMn2—xO4 were examined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscopy (SEM), galvanostatic charge-discharge test, and cyclic voltammetry (CV). XRD results show that the La3+ can partially replace Mn3+ in the spinel and the doped materials with La3+ have a larger lattice constant compared with pristine LiMn2O4. FT-IR indicates that the absorption peak of Mn3+−O and Mn4+− O bonds has a red and blue shift with the increase of doping lanthanum in LiLaxMn2—xO4, respectively. The charge-discharge test exhibits that the initial discharge capacity of LiLaxMn2—xO4 drops off, and the capacity retention increases gradually at C/5 discharge rate with the increase of doping lanthanum, and LiLa0.01Mn1.99O4 has a higher discharge capacity and a better cycling performance at 1C discharge rate. CV reveals that the doping La3+ is beneficial to the reversible extraction and intercalation of Li+ ions.  相似文献   

15.
Both α-Co(OH)_2 and Co_3O_4 porous microspheres have been synthesized by the simple solvothermal process as well as subsequent treatment. The morphologies and structures of the as-synthesized products were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and X-ray photoelectron spectroscopy(XPS). Both samples have spherical structures consisting of nanosheets, with similar crystallinity. The electrochemical properties of both samples were further investigated. Both samples show excellent electrochemical performances including high specific capacity, good cycling stability and rate capability. All results show that these microspheres exhibit potential applications in energy storage field.  相似文献   

16.
Experimental studies were conducted on the feasibility of aerobic granular biomass as a novel type of biosorbent for Pb^2+ removal. The results show that the initial pH, Pb^2+ concentration (Co) and biomass concentration (X0) affected the biosorption process significantly. Both the Freundlich and Langmuir isotherm models describe the biosorption process accurately, with correlation coefficients of 0.932 and 0.959 respectively. The Pb^2+ biosorpUon kinetics is interpreted as having two stages, with the second stage described reasonably well by a Lagergren pseudo-second order model. Moreover, the surface change of granular biomass after the Pb^2+ biosorption process appears to be caused by ion exchange and metal chelation according to the analysis results of Environmental Scanning Electron Microscopy (ESEM) and Energy Dispersive X-ray Spectroscopy (EDX).  相似文献   

17.
Large amounts of data regarding the influence of temperature and pressure on the thermal stability of crude oil have been published; however, the role of reservoir mediums has received little attention. Experiments involving oil cracking in the presence of montmorillonite, illite, calcite, quartz and water were conducted in closed gold tubes to investigate the effects of these reservoir mediums on oil destruction. This was done by screening variations in the chemical and stable carbon isotopic components of nC10+ and gasoline-range hydrocarbons (nC8?) present in various systems. Results indicated that reservoir mediums have an active role in oil cracking under experimental conditions. The concentrations of nC10+ in the cracked residues progressively decreased in systems containing oil+water+illite, oil+water+montmorillonite, oil+water, oil+water+quartz and oil+water+calcite. In comparison with the system containing oil+water, our results indicated a retardation effect for oil cracking in systems in the presence of illite and montmorillonite, and an acceleration effect on oil destruction in systems in the presence of calcite and quartz. nC10+ became increasingly depleted in 13C in systems with oil+water+illite, oil+water+calcite, oil+water+montmorillonite, oil+water+ quartz and oil+water. No obvious correlation was observed between concentrations and stable carbon isotopic components of nC6-nC8 and nC10+ in the individual systems. The discrepancies in chemical and stable carbon isotopic components of nC6-nC8 and nC10+ in the pyrolyzed residues highlighted the important role of reservoir mediums to control carbon-carbon cleavage of nC10+ and then the isomerization, cyclolization and aromatization reactions; as well as governing the occurrence and thermal destruction of nC6-nC8 under experimental conditions. This research may have critical implications in reconstructing chemical kinetic models for natural oil cracking.  相似文献   

18.
The CaLaGa3O7:Eu3+ phosphor was prepared by a chemical co-precipitation method. Field emission scanning electron microscopy (FE-SEM), laser particle size analysis, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphor. The results revealed that the phosphor was composed of microspheres with a slight agglomerate phenomenon and was spherically shaped. The average grain size was about 1.0 μm. Eu3+ ions, as luminescent centers, substituted La3+ ions into the single crystal lattice of CaLaGa3O7 with the sites of Cs. Although the CL spectrum was greatly different from the PL spectrum, it had the strongest red emission corresponding to the 5D07F2 transition of Eu3+. Under the excitation of UV light (287 nm) and electron beams (1.0–7.0 kV), the chromaticity coordinates of the phosphor were found to be in the nearly red and orange light regions, respectively.  相似文献   

19.
V2O5/TiO2 composite films were prepared on pure titanium substrates via micro-arc oxidation (MAO) in electrolytes consisting of NaVO3. Their morphology and elements were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Phase composition and valence states of species in the films were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were also employed to evaluate the photophysical property of the films. The V2O5/TiO2 composite films show a sheet-like morphology. Not only V2O5 phase appears in the films when the NaVO3 concentration of the electrolyte is higher than 6.10 g/L and is loaded at the surface of anatase, but also V4+ is incorporated into the crystal lattice of anatase. In comparison with pure TiO2 films the V2O5/TiO2 composite films exhibit significantly narrow band gap energy. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the narrowest band gap energy, which is approximately 1.89 eV. The V2O5/TiO2 composite films also have the significantly enhanced visible light photocatalytic activity. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the best photocatalytic activity and about 93% of rhodamine is degraded after 14 h visible light radiation.  相似文献   

20.
Tin sulfide (SnS) thin films were prepared by electrodeposition onto fluorine-doped tin oxide (FTO) glass substrates using an aqueous solution containing SnCl2 and Na2S2O3 at various deposition potentials (E) and bath concentrations. The pH value and temperature of the solution were kept constant. The deposited films were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), photoluminescence (PL), and ultraviolet–visible (UV–Vis) spectroscopy. The FESEM images demonstrated that changes in the deposition potential (E) and solution concentration led to marked changes in the morphology of the deposited SnS films. Energy-dispersive X-ray analysis (EDXA) results showed that the Sn/S atomic ratio strongly depended on both the solution concentration and the deposition potential. To obtain an Sn/S atomic ratio approximately equal to 1, the optimal Sn2+/S2O32- molar ratio and E parameter were 1/8 and -1.0 V, respectively. The XRD patterns showed that the synthesized SnS was obviously polycrystalline, with an orthorhombic structure. The effects of the variations of bath concentration and deposition potential on the band-gap energy (Eg) were studied using PL and UV–Vis experiments. The PL spectra of all the SnS films contained two peaks in the visible region and one peak in the infrared (IR) region. The UV–Vis spectra showed that the optical band-gap energy varies from 1.21 to 1.44 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号