首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Heit JJ  Apelqvist AA  Gu X  Winslow MM  Neilson JR  Crabtree GR  Kim SK 《Nature》2006,443(7109):345-349
The growth and function of organs such as pancreatic islets adapt to meet physiological challenges and maintain metabolic balance, but the mechanisms controlling these facultative responses are unclear. Diabetes in patients treated with calcineurin inhibitors such as cyclosporin A indicates that calcineurin/nuclear factor of activated T-cells (NFAT) signalling might control adaptive islet responses, but the roles of this pathway in beta-cells in vivo are not understood. Here we show that mice with a beta-cell-specific deletion of the calcineurin phosphatase regulatory subunit, calcineurin b1 (Cnb1), develop age-dependent diabetes characterized by decreased beta-cell proliferation and mass, reduced pancreatic insulin content and hypoinsulinaemia. Moreover, beta-cells lacking Cnb1 have a reduced expression of established regulators of beta-cell proliferation. Conditional expression of active NFATc1 in Cnb1-deficient beta-cells rescues these defects and prevents diabetes. In normal adult beta-cells, conditional NFAT activation promotes the expression of cell-cycle regulators and increases beta-cell proliferation and mass, resulting in hyperinsulinaemia. Conditional NFAT activation also induces the expression of genes critical for beta-cell endocrine function, including all six genes mutated in hereditary forms of monogenic type 2 diabetes. Thus, calcineurin/NFAT signalling regulates multiple factors that control growth and hallmark beta-cell functions, revealing unique models for the pathogenesis and therapy of diabetes.  相似文献   

2.
Mitochondrial function in normal and diabetic beta-cells.   总被引:18,自引:0,他引:18  
P Maechler  C B Wollheim 《Nature》2001,414(6865):807-812
The aetiology of type 2, or non-insulin-dependent, diabetes mellitus has been characterized in only a limited number of cases. Among these, mitochondrial diabetes, a rare subform of the disease, is the consequence of pancreatic beta-cell dysfunction caused by mutations in mitochondrial DNA, which is distinct from the nuclear genome. The impact of such mutations on beta-cell function reflects the importance of mitochondria in the control of insulin secretion. The beta-cell mitochondria serve as fuel sensors, generating factors that couple nutrient metabolism to the exocytosis of insulin-containing vesicles. The latter process requires an increase in cytosolic Ca2+, which depends on ATP synthesized by the mitochondria. This organelle also generates other factors, of which glutamate has been proposed as a potential intracellular messenger.  相似文献   

3.
Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.  相似文献   

4.
P A Smith  P Rorsman  F M Ashcroft 《Nature》1989,342(6249):550-553
Glucose stimulates insulin secretion from the pancreatic beta-cell by increasing the cytosolic calcium concentration. It is believed that this increment results mainly from Ca2+ influx through dihydropyridine-sensitive calcium channels because insulin secretion is abolished by dihydropyridine antagonists and is potentiated by dihydropyridine agonists. Glucose may influence Ca2+ influx through these channels in two ways: either by regulating the beta-cell membrane potential or by biochemical modulation of the channel itself. The former mechanism is well established. Glucose metabolism, by closing ATP-sensitive K+ channels, depolarizes the beta-cell membrane and initiates Ca2+-dependent electrical activity, with higher glucose concentrations further increasing Ca2+ influx by raising the frequency of action potentials. We show here that glucose metabolism also increases calcium influx directly, by modulating the activity of dihydropyridine-sensitive Ca2+ channels.  相似文献   

5.
Maechler P  Wollheim CB 《Nature》1999,402(6762):685-689
The hormone insulin is stored in secretory granules and released from the pancreatic beta-cells by exocytosis. In the consensus model of glucose-stimulated insulin secretion, ATP is generated by mitochondrial metabolism, promoting closure of ATP-sensitive potassium (KATP) channels, which depolarizes the plasma membrane. Subsequently, opening of voltage-sensitive Ca2+ channels increases the cytosolic Ca2+ concentration ([Ca2+]c) which constitutes the main trigger initiating insulin exocytosis. Nevertheless, the Ca2+ signal alone is not sufficient for sustained secretion. Furthermore, glucose elicits a secretory response under conditions of clamped, elevated [Ca2+]c. A mitochondrial messenger must therefore exist which is distinct from ATP. We have now identified this as glutamate. We show that glucose generates glutamate from beta-cell mitochondria. A membrane-permeant glutamate analogue sensitizes the glucose-evoked secretory response, acting downstream of mitochondrial metabolism. In permeabilized cells, under conditions of fixed [Ca2+]c, added glutamate directly stimulates insulin exocytosis, independently of mitochondrial function. Glutamate uptake by the secretory granules is likely to be involved, as inhibitors of vesicular glutamate transport suppress the glutamate-evoked exocytosis. These results demonstrate that glutamate acts as an intracellular messenger that couples glucose metabolism to insulin secretion.  相似文献   

6.
Mechanisms linking obesity to insulin resistance and type 2 diabetes   总被引:3,自引:0,他引:3  
Kahn SE  Hull RL  Utzschneider KM 《Nature》2006,444(7121):840-846
Obesity is associated with an increased risk of developing insulin resistance and type 2 diabetes. In obese individuals, adipose tissue releases increased amounts of non-esterified fatty acids, glycerol, hormones, pro-inflammatory cytokines and other factors that are involved in the development of insulin resistance. When insulin resistance is accompanied by dysfunction of pancreatic islet beta-cells - the cells that release insulin - failure to control blood glucose levels results. Abnormalities in beta-cell function are therefore critical in defining the risk and development of type 2 diabetes. This knowledge is fostering exploration of the molecular and genetic basis of the disease and new approaches to its treatment and prevention.  相似文献   

7.
A pancreatic islet-specific microRNA regulates insulin secretion   总被引:4,自引:0,他引:4  
MicroRNAs (miRNAs) constitute a growing class of non-coding RNAs that are thought to regulate gene expression by translational repression. Several miRNAs in animals exhibit tissue-specific or developmental-stage-specific expression, indicating that they could play important roles in many biological processes. To study the role of miRNAs in pancreatic endocrine cells we cloned and identified a novel, evolutionarily conserved and islet-specific miRNA (miR-375). Here we show that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous miR-375 function enhanced insulin secretion. The mechanism by which secretion is modified by miR-375 is independent of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct effect on insulin exocytosis. Myotrophin (Mtpn) was predicted to be and validated as a target of miR-375. Inhibition of Mtpn by small interfering (si)RNA mimicked the effects of miR-375 on glucose-stimulated insulin secretion and exocytosis. Thus, miR-375 is a regulator of insulin secretion and may thereby constitute a novel pharmacological target for the treatment of diabetes.  相似文献   

8.
通过分析运动对2型糖尿病胰岛素抵抗的相关因子的影响,发现2型糖尿病主要是胰岛素抵抗和胰岛素分泌受损所导致.因此,只要了解胰腺β细胞的胰岛素抵抗程度,就可以加以弥补,使葡萄糖耐受性维持正常.  相似文献   

9.
Glucose-stimulated insulin secretion is associated with the appearance of electrical activity in the pancreatic beta-cell. At intermediate glucose concentrations, beta-cell electrical activity follows a characteristic pattern of slow oscillations in membrane potential on which bursts of action potentials are superimposed. The electrophysiological background of the bursting pattern remains unestablished. Activation of Ca(2+)-activated large-conductance K+ channels (KCa channel) has been implicated in this process but seems unlikely in view of recent evidence demonstrating that the beta-cell electrical activity is unaffected by the specific KCa channel blocker charybdotoxin. Another hypothesis postulates that the bursting arises as a consequence of two components of Ca(2+)-current inactivation. Here we show that activation of a novel Ca(2+)-dependent K+ current in glucose-stimulated beta-cells produces a transient membrane repolarization. This interrupts action potential firing so that action potentials appear in bursts. Spontaneous activity of this current was seen only rarely but could be induced by addition of compounds functionally related to hormones and neurotransmitters present in the intact pancreatic islet. K+ currents of the same type could be evoked by intracellular application of GTP, the effect of which was mediated by mobilization of Ca2+ from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores. These observations suggest that oscillatory glucose-stimulated electrical activity, which is correlated with pulsatile release of insulin, results from the interaction between the beta-cell and intraislet hormones and neurotransmitters. Our data also provide evidence for a close interplay between ion channels in the plasma membrane and InsP3-induced mobilization of intracellular Ca2+ in an excitable cell.  相似文献   

10.
Diabetes, a disease in which carbohydrate and lipid metabolism are regulated improperly by insulin, is a serious worldwide health issue. Insulin is secreted from pancreatic beta cells in response to elevated plasma glucose, with various factors modifying its secretion. Free fatty acids (FFAs) provide an important energy source as nutrients, and they also act as signalling molecules in various cellular processes, including insulin secretion. Although FFAs are thought to promote insulin secretion in an acute phase, this mechanism is not clearly understood. Here we show that a G-protein-coupled receptor, GPR40, which is abundantly expressed in the pancreas, functions as a receptor for long-chain FFAs. Furthermore, we show that long-chain FFAs amplify glucose-stimulated insulin secretion from pancreatic beta cells by activating GPR40. Our results indicate that GPR40 agonists and/or antagonists show potential for the development of new anti-diabetic drugs.  相似文献   

11.
The endocrine part of the pancreas plays a central role in blood-glucose regulation. It is well established that an elevation of glucose concentration reduces secretion of the hyperglycaemia-associated hormone glucagon from pancreatic alpha 2 cells. The mechanisms involved, however, remain unknown. Electrophysiological studies have demonstrated that alpha 2 cells generate Ca2+-dependent action potentials. The frequency of these action potentials, which increases under conditions that stimulate glucagon release, is not affected by glucose or insulin. The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is present in the endocrine part of the pancreas at concentrations comparable to those encountered in the central nervous system, and co-localizes with insulin in pancreatic beta cells. We now describe a mechanism whereby GABA, co-secreted with insulin from beta cells, may mediate part of the inhibitory action of glucose on glucagon secretion by activating GABAA-receptor Cl- channels in alpha 2 cells. These observations provide a model for feedback regulation of glucagon release, which may be of significance for the understanding of the hypersecretion of glucagon frequently associated with diabetes.  相似文献   

12.
In vivo reprogramming of adult pancreatic exocrine cells to beta-cells   总被引:2,自引:0,他引:2  
Zhou Q  Brown J  Kanarek A  Rajagopal J  Melton DA 《Nature》2008,455(7213):627-632
  相似文献   

13.
枸杞多糖对Ⅱ型糖尿病小鼠胰岛细胞形态与功能的影响   总被引:3,自引:0,他引:3  
采用高糖高热量饮食并结合小剂量腹腔注射STZ诱导Ⅱ型糖尿病(NIDDM)小鼠模型,枸杞多糖灌胃4周,用免疫组化技术对胰岛A、B细胞进行形态学分析及观察血糖、血清胰岛素的变化。结果显示,枸杞多糖大,小剂量组和模型组比较空腹血糖下降,胰岛素水平升高。图像分析大剂量组和模型组比较,B细胞数密度增加、A细胞数密度减小、B细胞切面积、核面积、核质比升高。结论:枸杞多糖可以改善Ⅱ型糖尿病小鼠胰岛细胞形态和功能并促进胰岛素的分泌,有良好的降血糖作用。  相似文献   

14.
Lee HC  Kim SJ  Kim KS  Shin HC  Yoon JW 《Nature》2000,408(6811):483-488
A cure for diabetes has long been sought using several different approaches, including islet transplantation, regeneration of beta cells and insulin gene therapy. However, permanent remission of type 1 diabetes has not yet been satisfactorily achieved. The development of type 1 diabetes results from the almost total destruction of insulin-producing pancreatic beta cells by autoimmune responses specific to beta cells. Standard insulin therapy may not maintain blood glucose concentrations within the relatively narrow range that occurs in the presence of normal pancreatic beta cells. We used a recombinant adeno-associated virus (rAAV) that expresses a single-chain insulin analogue (SIA), which possesses biologically active insulin activity without enzymatic conversion, under the control of hepatocyte-specific L-type pyruvate kinase (LPK) promoter, which regulates SIA expression in response to blood glucose levels. Here we show that SIA produced from the gene construct rAAV-LPK-SIA caused remission of diabetes in streptozotocin-induced diabetic rats and autoimmune diabetic mice for a prolonged time without any apparent side effects. This new SIA gene therapy may have potential therapeutic value for the cure of autoimmune diabetes in humans.  相似文献   

15.
Insulin is produced and secreted by the B cells in the endocrine pancreas. In vivo, insulin secretion is under the control of a number of metabolic, neural and hormonal substances. It is now clear that stimulation of insulin release by fuel secretagogues, such as glucose, involves the closure of K+ channels that are sensitive to the intracellular ATP concentration (KATP channels). This leads to membrane depolarization and the generation of Ca2(+)-dependent action potentials. The mechanisms whereby hormones and neurotransmitters such as adrenaline, galanin and somatostatin, which are released by intraislet nerve endings and the pancreatic D cells, produce inhibition of insulin secretion are not clear. Here we show that adrenaline suppresses B-cell electrical activity (and thus insulin secretion) by a G protein-dependent mechanism, which culminates in the activation of a sulphonylurea-insensitive low-conductance K+ channel distinct from the KATP channel.  相似文献   

16.
Ng SF  Lin RC  Laybutt DR  Barres R  Owens JA  Morris MJ 《Nature》2010,467(7318):963-966
The global prevalence of obesity is increasing across most ages in both sexes. This is contributing to the early emergence of type 2 diabetes and its related epidemic. Having either parent obese is an independent risk factor for childhood obesity. Although the detrimental impacts of diet-induced maternal obesity on adiposity and metabolism in offspring are well established, the extent of any contribution of obese fathers is unclear, particularly the role of non-genetic factors in the causal pathway. Here we show that paternal high-fat-diet (HFD) exposure programs β-cell 'dysfunction' in rat F(1) female offspring. Chronic HFD consumption in Sprague-Dawley fathers induced increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had an early onset of impaired insulin secretion and glucose tolerance that worsened with time, and normal adiposity. Paternal HFD altered the expression of 642 pancreatic islet genes in adult female offspring (P?相似文献   

17.
In autoimmune type 1 diabetes, pathogenic T lymphocytes are associated with the specific destruction of insulin-producing beta-islet cells. Identification of the autoantigens involved in triggering this process is a central question. Here we examined T cells from pancreatic draining lymph nodes, the site of islet-cell-specific self-antigen presentation. We cloned single T cells in a non-biased manner from pancreatic draining lymph nodes of subjects with type 1 diabetes and from non-diabetic controls. A high degree of T-cell clonal expansion was observed in pancreatic lymph nodes from long-term diabetic patients but not from control subjects. The oligoclonally expanded T cells from diabetic subjects with DR4, a susceptibility allele for type 1 diabetes, recognized the insulin A 1-15 epitope restricted by DR4. These results identify insulin-reactive, clonally expanded T cells from the site of autoinflammatory drainage in long-term type 1 diabetics, indicating that insulin may indeed be the target antigen causing autoimmune diabetes.  相似文献   

18.
Calcium is known to play an essential part in the regulation of insulin secretion in the pancreatic beta cell. Calcium influx/efflux studies indicate that glucose promotes an accumulation of calcium by the beta cell. However, interpretation of such data is particularly difficult due to the complex compartmentalization of calcium within the cell. Although indirect evidence using chlorotetracycline suggests that control of calcium homeostasis at the plasma membrane may be central to insulin secretion, the mechanism by which secretagogues influence the handling of calcium remains unknown. Despite its continuous diffusive entry, intracellular calcium is maintained in the submicromolar range by energy-dependent mechanisms. One such process which has been well characterized in erythrocytes is a plasma membrane calcium extrusion pump whose enzymatic basis is a high affinity (Ca+2 + Mg+2)ATPase. A similar mechanism regulated by insulin has recently been identified in adipocyte plasma membranes. We report here the presence of a high affinity (Ca+2 + Mg+2)ATPase and ATP-dependent calmodulin-stimulated calcium transport system in rat pancreatic islet cell plasma membranes.  相似文献   

19.
20.
目的研究胰岛素抵抗和胰岛素缺乏与Ⅱ型糖尿病发病机制的关系.方法Ⅱ型糖尿病普遍存在胰岛素、胰岛素原障碍,胰岛β细胞分泌出胰岛素原经胰岛素原转化酶(Prohormone convertase,PC2)去除部分肽段后形成胰岛素.结果与结论若PC降解功能异常可导致胰岛素原及其代谢产物不适当分泌引起胰岛素缺乏,研究该基因分布和表达的变化,对探讨糖尿病胰岛素抵抗的发病机制奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号